Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opsrval2 | Structured version Visualization version GIF version |
Description: Self-referential expression for the ordered power series structure. (Contributed by Mario Carneiro, 8-Feb-2015.) |
Ref | Expression |
---|---|
opsrval2.s | ⊢ 𝑆 = (𝐼 mPwSer 𝑅) |
opsrval2.o | ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) |
opsrval2.l | ⊢ ≤ = (le‘𝑂) |
opsrval2.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
opsrval2.r | ⊢ (𝜑 → 𝑅 ∈ 𝑊) |
opsrval2.t | ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) |
Ref | Expression |
---|---|
opsrval2 | ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opsrval2.s | . . 3 ⊢ 𝑆 = (𝐼 mPwSer 𝑅) | |
2 | opsrval2.o | . . 3 ⊢ 𝑂 = ((𝐼 ordPwSer 𝑅)‘𝑇) | |
3 | eqid 2610 | . . 3 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
4 | eqid 2610 | . . 3 ⊢ (lt‘𝑅) = (lt‘𝑅) | |
5 | eqid 2610 | . . 3 ⊢ (𝑇 <bag 𝐼) = (𝑇 <bag 𝐼) | |
6 | eqid 2610 | . . 3 ⊢ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} = {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} | |
7 | eqid 2610 | . . 3 ⊢ {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))} | |
8 | opsrval2.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
9 | opsrval2.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ 𝑊) | |
10 | opsrval2.t | . . 3 ⊢ (𝜑 → 𝑇 ⊆ (𝐼 × 𝐼)) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | opsrval 19295 | . 2 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
12 | opsrval2.l | . . . . 5 ⊢ ≤ = (le‘𝑂) | |
13 | 1, 2, 3, 4, 5, 6, 12, 10 | opsrle 19296 | . . . 4 ⊢ (𝜑 → ≤ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}) |
14 | 13 | opeq2d 4347 | . . 3 ⊢ (𝜑 → 〈(le‘ndx), ≤ 〉 = 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉) |
15 | 14 | oveq2d 6565 | . 2 ⊢ (𝜑 → (𝑆 sSet 〈(le‘ndx), ≤ 〉) = (𝑆 sSet 〈(le‘ndx), {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ (Base‘𝑆) ∧ (∃𝑧 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} ((𝑥‘𝑧)(lt‘𝑅)(𝑦‘𝑧) ∧ ∀𝑤 ∈ {ℎ ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡ℎ “ ℕ) ∈ Fin} (𝑤(𝑇 <bag 𝐼)𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤))) ∨ 𝑥 = 𝑦))}〉)) |
16 | 11, 15 | eqtr4d 2647 | 1 ⊢ (𝜑 → 𝑂 = (𝑆 sSet 〈(le‘ndx), ≤ 〉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 ∧ wa 383 = wceq 1475 ∈ wcel 1977 ∀wral 2896 ∃wrex 2897 {crab 2900 ⊆ wss 3540 {cpr 4127 〈cop 4131 class class class wbr 4583 {copab 4642 × cxp 5036 ◡ccnv 5037 “ cima 5041 ‘cfv 5804 (class class class)co 6549 ↑𝑚 cmap 7744 Fincfn 7841 ℕcn 10897 ℕ0cn0 11169 ndxcnx 15692 sSet csts 15693 Basecbs 15695 lecple 15775 ltcplt 16764 mPwSer cmps 19172 <bag cltb 19175 ordPwSer copws 19176 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-ltxr 9958 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-7 10961 df-8 10962 df-9 10963 df-dec 11370 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-ple 15788 df-psr 19177 df-opsr 19181 |
This theorem is referenced by: opsrbaslem 19298 opsrbaslemOLD 19299 |
Copyright terms: Public domain | W3C validator |