Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7tALT Structured version   Visualization version   GIF version

Theorem normlem7tALT 27360
 Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
normlem7tALT ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))

Proof of Theorem normlem7tALT
StepHypRef Expression
1 fveq2 6103 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (∗‘𝑆) = (∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
21oveq1d 6564 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((∗‘𝑆) · (𝐴 ·ih 𝐵)) = ((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)))
3 oveq1 6556 . . . 4 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 · (𝐵 ·ih 𝐴)) = (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴)))
42, 3oveq12d 6567 . . 3 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) = (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))))
54breq1d 4593 . 2 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))) ↔ (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))))
6 eleq1 2676 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (𝑆 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
7 fveq2 6103 . . . . . . 7 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘𝑆) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
87eqeq1d 2612 . . . . . 6 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘𝑆) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
96, 8anbi12d 743 . . . . 5 (𝑆 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
10 eleq1 2676 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (1 ∈ ℂ ↔ if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ))
11 fveq2 6103 . . . . . . 7 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → (abs‘1) = (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)))
1211eqeq1d 2612 . . . . . 6 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((abs‘1) = 1 ↔ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1))
1310, 12anbi12d 743 . . . . 5 (1 = if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) → ((1 ∈ ℂ ∧ (abs‘1) = 1) ↔ (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)))
14 ax-1cn 9873 . . . . . 6 1 ∈ ℂ
15 abs1 13885 . . . . . 6 (abs‘1) = 1
1614, 15pm3.2i 470 . . . . 5 (1 ∈ ℂ ∧ (abs‘1) = 1)
179, 13, 16elimhyp 4096 . . . 4 (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ ∧ (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1)
1817simpli 473 . . 3 if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) ∈ ℂ
19 normlem7t.1 . . 3 𝐴 ∈ ℋ
20 normlem7t.2 . . 3 𝐵 ∈ ℋ
2117simpri 477 . . 3 (abs‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) = 1
2218, 19, 20, 21normlem7 27357 . 2 (((∗‘if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1)) · (𝐴 ·ih 𝐵)) + (if((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1), 𝑆, 1) · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴))))
235, 22dedth 4089 1 ((𝑆 ∈ ℂ ∧ (abs‘𝑆) = 1) → (((∗‘𝑆) · (𝐴 ·ih 𝐵)) + (𝑆 · (𝐵 ·ih 𝐴))) ≤ (2 · ((√‘(𝐵 ·ih 𝐵)) · (√‘(𝐴 ·ih 𝐴)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ifcif 4036   class class class wbr 4583  ‘cfv 5804  (class class class)co 6549  ℂcc 9813  1c1 9816   + caddc 9818   · cmul 9820   ≤ cle 9954  2c2 10947  ∗ccj 13684  √csqrt 13821  abscabs 13822   ℋchil 27160   ·ih csp 27163 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hfvadd 27241  ax-hv0cl 27244  ax-hfvmul 27246  ax-hvmulass 27248  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-hvsub 27212 This theorem is referenced by:  bcsiALT  27420
 Copyright terms: Public domain W3C validator