HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  bcseqi Structured version   Visualization version   GIF version

Theorem bcseqi 27361
Description: Equality case of Bunjakovaskij-Cauchy-Schwarz inequality. Specifically, in the equality case the two vectors are collinear. Compare bcsiHIL 27421. (Contributed by NM, 16-Jul-2001.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1 𝐴 ∈ ℋ
normlem7t.2 𝐵 ∈ ℋ
Assertion
Ref Expression
bcseqi (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))

Proof of Theorem bcseqi
StepHypRef Expression
1 normlem7t.2 . . . . . . . 8 𝐵 ∈ ℋ
21, 1hicli 27322 . . . . . . 7 (𝐵 ·ih 𝐵) ∈ ℂ
3 normlem7t.1 . . . . . . 7 𝐴 ∈ ℋ
42, 3hvmulcli 27255 . . . . . 6 ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ
53, 1hicli 27322 . . . . . . 7 (𝐴 ·ih 𝐵) ∈ ℂ
65, 1hvmulcli 27255 . . . . . 6 ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ
74, 6, 4, 6normlem9 27359 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
8 oveq1 6556 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)))
98eqcomd 2616 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)))
10 his5 27327 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)))
112, 4, 3, 10mp3an 1416 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴))
12 hiidrcl 27336 . . . . . . . . . . . 12 (𝐵 ∈ ℋ → (𝐵 ·ih 𝐵) ∈ ℝ)
13 cjre 13727 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) ∈ ℝ → (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵))
141, 12, 13mp2b 10 . . . . . . . . . . 11 (∗‘(𝐵 ·ih 𝐵)) = (𝐵 ·ih 𝐵)
15 ax-his3 27325 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
162, 3, 3, 15mp3an 1416 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
1714, 16oveq12i 6561 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)))
183, 3hicli 27322 . . . . . . . . . . . . 13 (𝐴 ·ih 𝐴) ∈ ℂ
192, 18mulcli 9924 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) ∈ ℂ
202, 19mulcomi 9925 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2118, 2mulcomi 9925 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))
2221oveq1i 6559 . . . . . . . . . . 11 (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
2320, 22eqtr4i 2635 . . . . . . . . . 10 ((𝐵 ·ih 𝐵) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐴))) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
2411, 17, 233eqtri 2636 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐵))
25 his5 27327 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐵 ·ih 𝐵) · 𝐴) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)))
265, 4, 1, 25mp3an 1416 . . . . . . . . . 10 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵))
271, 3his1i 27341 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) = (∗‘(𝐴 ·ih 𝐵))
2827eqcomi 2619 . . . . . . . . . . 11 (∗‘(𝐴 ·ih 𝐵)) = (𝐵 ·ih 𝐴)
29 ax-his3 27325 . . . . . . . . . . . 12 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
302, 3, 1, 29mp3an 1416 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵) = ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))
3128, 30oveq12i 6561 . . . . . . . . . 10 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)))
321, 3hicli 27322 . . . . . . . . . . . 12 (𝐵 ·ih 𝐴) ∈ ℂ
332, 5mulcli 9924 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) ∈ ℂ
3432, 33mulcomi 9925 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
352, 5, 32mulassi 9928 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
365, 32mulcli 9924 . . . . . . . . . . . 12 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) ∈ ℂ
372, 36mulcomi 9925 . . . . . . . . . . 11 ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3834, 35, 373eqtri 2636 . . . . . . . . . 10 ((𝐵 ·ih 𝐴) · ((𝐵 ·ih 𝐵) · (𝐴 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
3926, 31, 383eqtri 2636 . . . . . . . . 9 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
409, 24, 393eqtr4g 2669 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)))
41 ax-his3 27325 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
425, 1, 3, 41mp3an 1416 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴))
4314, 42oveq12i 6561 . . . . . . . . . 10 ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
44 his5 27327 . . . . . . . . . . 11 (((𝐵 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐴 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)))
452, 6, 3, 44mp3an 1416 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) = ((∗‘(𝐵 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
46 his5 27327 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ ((𝐴 ·ih 𝐵) · 𝐵) ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)))
475, 6, 1, 46mp3an 1416 . . . . . . . . . . 11 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵))
48 ax-his3 27325 . . . . . . . . . . . . 13 (((𝐴 ·ih 𝐵) ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
495, 1, 1, 48mp3an 1416 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))
5028, 49oveq12i 6561 . . . . . . . . . . 11 ((∗‘(𝐴 ·ih 𝐵)) · (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐵)) = ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)))
515, 2mulcli 9924 . . . . . . . . . . . . 13 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) ∈ ℂ
5232, 51mulcomi 9925 . . . . . . . . . . . 12 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴))
535, 2, 32mul32i 10111 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵)) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵))
5436, 2mulcomi 9925 . . . . . . . . . . . 12 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) · (𝐵 ·ih 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5552, 53, 543eqtri 2636 . . . . . . . . . . 11 ((𝐵 ·ih 𝐴) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐵))) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5647, 50, 553eqtri 2636 . . . . . . . . . 10 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = ((𝐵 ·ih 𝐵) · ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
5743, 45, 563eqtr4ri 2643 . . . . . . . . 9 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))
5857a1i 11 . . . . . . . 8 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))
5940, 58oveq12d 6567 . . . . . . 7 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) = ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))))
6059oveq1d 6564 . . . . . 6 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))))
614, 6hicli 27322 . . . . . . . 8 (((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℂ
626, 4hicli 27322 . . . . . . . 8 (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) ∈ ℂ
6361, 62addcli 9923 . . . . . . 7 ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) ∈ ℂ
6463subidi 10231 . . . . . 6 (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0
6560, 64syl6eq 2660 . . . . 5 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐵 ·ih 𝐵) · 𝐴)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐴 ·ih 𝐵) · 𝐵))) − ((((𝐵 ·ih 𝐵) · 𝐴) ·ih ((𝐴 ·ih 𝐵) · 𝐵)) + (((𝐴 ·ih 𝐵) · 𝐵) ·ih ((𝐵 ·ih 𝐵) · 𝐴)))) = 0)
667, 65syl5eq 2656 . . . 4 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0)
674, 6hvsubcli 27262 . . . . 5 (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ
68 his6 27340 . . . . 5 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ∈ ℋ → (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0))
6967, 68ax-mp 5 . . . 4 (((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) ·ih (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵))) = 0 ↔ (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
7066, 69sylib 207 . . 3 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → (((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0)
714, 6hvsubeq0i 27304 . . 3 ((((𝐵 ·ih 𝐵) · 𝐴) − ((𝐴 ·ih 𝐵) · 𝐵)) = 0 ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
7270, 71sylib 207 . 2 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) → ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
73 oveq1 6556 . . . 4 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴))
7421, 16eqtr4i 2635 . . . 4 ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = (((𝐵 ·ih 𝐵) · 𝐴) ·ih 𝐴)
7542eqcomi 2619 . . . 4 ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = (((𝐴 ·ih 𝐵) · 𝐵) ·ih 𝐴)
7673, 74, 753eqtr4g 2669 . . 3 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) = ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)))
7776eqcomd 2616 . 2 (((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵) → ((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)))
7872, 77impbii 198 1 (((𝐴 ·ih 𝐵) · (𝐵 ·ih 𝐴)) = ((𝐴 ·ih 𝐴) · (𝐵 ·ih 𝐵)) ↔ ((𝐵 ·ih 𝐵) · 𝐴) = ((𝐴 ·ih 𝐵) · 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 195   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  cr 9814  0cc0 9815   + caddc 9818   · cmul 9820  cmin 10145  ccj 13684  chil 27160   · csm 27162   ·ih csp 27163  0c0v 27165   cmv 27166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-cj 13687  df-re 13688  df-im 13689  df-hvsub 27212
This theorem is referenced by:  h1de2i  27796
  Copyright terms: Public domain W3C validator