HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  normlem7tALT Unicode version

Theorem normlem7tALT 21528
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.)
Hypotheses
Ref Expression
normlem7t.1  |-  A  e. 
~H
normlem7t.2  |-  B  e. 
~H
Assertion
Ref Expression
normlem7tALT  |-  ( ( S  e.  CC  /\  ( abs `  S )  =  1 )  -> 
( ( ( * `
 S )  x.  ( A  .ih  B
) )  +  ( S  x.  ( B 
.ih  A ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )

Proof of Theorem normlem7tALT
StepHypRef Expression
1 fveq2 5377 . . . . 5  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( * `  S )  =  ( * `  if ( ( S  e.  CC  /\  ( abs `  S
)  =  1 ) ,  S ,  1 ) ) )
21oveq1d 5725 . . . 4  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( * `
 S )  x.  ( A  .ih  B
) )  =  ( ( * `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  x.  ( A  .ih  B
) ) )
3 oveq1 5717 . . . 4  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( S  x.  ( B  .ih  A ) )  =  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 )  x.  ( B  .ih  A ) ) )
42, 3oveq12d 5728 . . 3  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( ( * `  S )  x.  ( A  .ih  B ) )  +  ( S  x.  ( B 
.ih  A ) ) )  =  ( ( ( * `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  x.  ( A  .ih  B
) )  +  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  x.  ( B  .ih  A
) ) ) )
54breq1d 3930 . 2  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( ( ( * `  S
)  x.  ( A 
.ih  B ) )  +  ( S  x.  ( B  .ih  A ) ) )  <_  (
2  x.  ( ( sqr `  ( B 
.ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) )  <->  ( (
( * `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  x.  ( A  .ih  B
) )  +  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  x.  ( B  .ih  A
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) ) )
6 eleq1 2313 . . . . . 6  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( S  e.  CC  <->  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  e.  CC ) )
7 fveq2 5377 . . . . . . 7  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( abs `  S
)  =  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 ) ) )
87eqeq1d 2261 . . . . . 6  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( abs `  S )  =  1  <-> 
( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  =  1 ) )
96, 8anbi12d 694 . . . . 5  |-  ( S  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( S  e.  CC  /\  ( abs `  S )  =  1 )  <->  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 )  e.  CC  /\  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  =  1 ) ) )
10 eleq1 2313 . . . . . 6  |-  ( 1  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( 1  e.  CC  <->  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  e.  CC ) )
11 fveq2 5377 . . . . . . 7  |-  ( 1  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( abs `  1
)  =  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 ) ) )
1211eqeq1d 2261 . . . . . 6  |-  ( 1  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( abs `  1 )  =  1  <->  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  =  1 ) )
1310, 12anbi12d 694 . . . . 5  |-  ( 1  =  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  ->  ( ( 1  e.  CC  /\  ( abs `  1 )  =  1 )  <->  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 )  e.  CC  /\  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  =  1 ) ) )
14 ax-1cn 8675 . . . . . 6  |-  1  e.  CC
15 abs1 11659 . . . . . 6  |-  ( abs `  1 )  =  1
1614, 15pm3.2i 443 . . . . 5  |-  ( 1  e.  CC  /\  ( abs `  1 )  =  1 )
179, 13, 16elimhyp 3518 . . . 4  |-  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 )  e.  CC  /\  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  =  1 )
1817simpli 446 . . 3  |-  if ( ( S  e.  CC  /\  ( abs `  S
)  =  1 ) ,  S ,  1 )  e.  CC
19 normlem7t.1 . . 3  |-  A  e. 
~H
20 normlem7t.2 . . 3  |-  B  e. 
~H
2117simpri 450 . . 3  |-  ( abs `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 ) )  =  1
2218, 19, 20, 21normlem7 21525 . 2  |-  ( ( ( * `  if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S , 
1 ) )  x.  ( A  .ih  B
) )  +  ( if ( ( S  e.  CC  /\  ( abs `  S )  =  1 ) ,  S ,  1 )  x.  ( B  .ih  A
) ) )  <_ 
( 2  x.  (
( sqr `  ( B  .ih  B ) )  x.  ( sqr `  ( A  .ih  A ) ) ) )
235, 22dedth 3511 1  |-  ( ( S  e.  CC  /\  ( abs `  S )  =  1 )  -> 
( ( ( * `
 S )  x.  ( A  .ih  B
) )  +  ( S  x.  ( B 
.ih  A ) ) )  <_  ( 2  x.  ( ( sqr `  ( B  .ih  B
) )  x.  ( sqr `  ( A  .ih  A ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 6    /\ wa 360    = wceq 1619    e. wcel 1621   ifcif 3470   class class class wbr 3920   ` cfv 4592  (class class class)co 5710   CCcc 8615   1c1 8618    + caddc 8620    x. cmul 8622    <_ cle 8748   2c2 9675   *ccj 11458   sqrcsqr 11595   abscabs 11596   ~Hchil 21329    .ih csp 21332
This theorem is referenced by:  bcsiALT  21588
This theorem was proved from axioms:  ax-1 7  ax-2 8  ax-3 9  ax-mp 10  ax-5 1533  ax-6 1534  ax-7 1535  ax-gen 1536  ax-8 1623  ax-11 1624  ax-13 1625  ax-14 1626  ax-17 1628  ax-12o 1664  ax-10 1678  ax-9 1684  ax-4 1692  ax-16 1926  ax-ext 2234  ax-sep 4038  ax-nul 4046  ax-pow 4082  ax-pr 4108  ax-un 4403  ax-cnex 8673  ax-resscn 8674  ax-1cn 8675  ax-icn 8676  ax-addcl 8677  ax-addrcl 8678  ax-mulcl 8679  ax-mulrcl 8680  ax-mulcom 8681  ax-addass 8682  ax-mulass 8683  ax-distr 8684  ax-i2m1 8685  ax-1ne0 8686  ax-1rid 8687  ax-rnegex 8688  ax-rrecex 8689  ax-cnre 8690  ax-pre-lttri 8691  ax-pre-lttrn 8692  ax-pre-ltadd 8693  ax-pre-mulgt0 8694  ax-pre-sup 8695  ax-hfvadd 21410  ax-hv0cl 21413  ax-hfvmul 21415  ax-hvmulass 21417  ax-hvmul0 21420  ax-hfi 21488  ax-his1 21491  ax-his2 21492  ax-his3 21493  ax-his4 21494
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3or 940  df-3an 941  df-tru 1315  df-ex 1538  df-nf 1540  df-sb 1883  df-eu 2118  df-mo 2119  df-clab 2240  df-cleq 2246  df-clel 2249  df-nfc 2374  df-ne 2414  df-nel 2415  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2516  df-v 2729  df-sbc 2922  df-csb 3010  df-dif 3081  df-un 3083  df-in 3085  df-ss 3089  df-pss 3091  df-nul 3363  df-if 3471  df-pw 3532  df-sn 3550  df-pr 3551  df-tp 3552  df-op 3553  df-uni 3728  df-iun 3805  df-br 3921  df-opab 3975  df-mpt 3976  df-tr 4011  df-eprel 4198  df-id 4202  df-po 4207  df-so 4208  df-fr 4245  df-we 4247  df-ord 4288  df-on 4289  df-lim 4290  df-suc 4291  df-om 4548  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-res 4600  df-ima 4601  df-fun 4602  df-fn 4603  df-f 4604  df-f1 4605  df-fo 4606  df-f1o 4607  df-fv 4608  df-ov 5713  df-oprab 5714  df-mpt2 5715  df-2nd 5975  df-iota 6143  df-riota 6190  df-recs 6274  df-rdg 6309  df-er 6546  df-en 6750  df-dom 6751  df-sdom 6752  df-sup 7078  df-pnf 8749  df-mnf 8750  df-xr 8751  df-ltxr 8752  df-le 8753  df-sub 8919  df-neg 8920  df-div 9304  df-n 9627  df-2 9684  df-3 9685  df-4 9686  df-n0 9845  df-z 9904  df-uz 10110  df-rp 10234  df-seq 10925  df-exp 10983  df-cj 11461  df-re 11462  df-im 11463  df-sqr 11597  df-abs 11598  df-hvsub 21381
  Copyright terms: Public domain W3C validator