Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HSE Home > Th. List > normlem7 | Structured version Visualization version GIF version |
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of [Beran] p. 97. (Contributed by NM, 11-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
normlem1.1 | ⊢ 𝑆 ∈ ℂ |
normlem1.2 | ⊢ 𝐹 ∈ ℋ |
normlem1.3 | ⊢ 𝐺 ∈ ℋ |
normlem7.4 | ⊢ (abs‘𝑆) = 1 |
Ref | Expression |
---|---|
normlem7 | ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | normlem1.1 | . . . . . 6 ⊢ 𝑆 ∈ ℂ | |
2 | normlem1.2 | . . . . . 6 ⊢ 𝐹 ∈ ℋ | |
3 | normlem1.3 | . . . . . 6 ⊢ 𝐺 ∈ ℋ | |
4 | eqid 2610 | . . . . . 6 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) = -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) | |
5 | 1, 2, 3, 4 | normlem2 27352 | . . . . 5 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
6 | 1 | cjcli 13757 | . . . . . . . 8 ⊢ (∗‘𝑆) ∈ ℂ |
7 | 2, 3 | hicli 27322 | . . . . . . . 8 ⊢ (𝐹 ·ih 𝐺) ∈ ℂ |
8 | 6, 7 | mulcli 9924 | . . . . . . 7 ⊢ ((∗‘𝑆) · (𝐹 ·ih 𝐺)) ∈ ℂ |
9 | 3, 2 | hicli 27322 | . . . . . . . 8 ⊢ (𝐺 ·ih 𝐹) ∈ ℂ |
10 | 1, 9 | mulcli 9924 | . . . . . . 7 ⊢ (𝑆 · (𝐺 ·ih 𝐹)) ∈ ℂ |
11 | 8, 10 | addcli 9923 | . . . . . 6 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
12 | 11 | negrebi 10234 | . . . . 5 ⊢ (-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ ↔ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ) |
13 | 5, 12 | mpbi 219 | . . . 4 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℝ |
14 | 13 | leabsi 13967 | . . 3 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
15 | 11 | absnegi 13987 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) = (abs‘(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
16 | 14, 15 | breqtrri 4610 | . 2 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) |
17 | eqid 2610 | . . 3 ⊢ (𝐺 ·ih 𝐺) = (𝐺 ·ih 𝐺) | |
18 | eqid 2610 | . . 3 ⊢ (𝐹 ·ih 𝐹) = (𝐹 ·ih 𝐹) | |
19 | normlem7.4 | . . 3 ⊢ (abs‘𝑆) = 1 | |
20 | 1, 2, 3, 4, 17, 18, 19 | normlem6 27356 | . 2 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
21 | 11 | negcli 10228 | . . . 4 ⊢ -(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ∈ ℂ |
22 | 21 | abscli 13982 | . . 3 ⊢ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∈ ℝ |
23 | 2re 10967 | . . . 4 ⊢ 2 ∈ ℝ | |
24 | hiidge0 27339 | . . . . . 6 ⊢ (𝐺 ∈ ℋ → 0 ≤ (𝐺 ·ih 𝐺)) | |
25 | hiidrcl 27336 | . . . . . . . 8 ⊢ (𝐺 ∈ ℋ → (𝐺 ·ih 𝐺) ∈ ℝ) | |
26 | 3, 25 | ax-mp 5 | . . . . . . 7 ⊢ (𝐺 ·ih 𝐺) ∈ ℝ |
27 | 26 | sqrtcli 13959 | . . . . . 6 ⊢ (0 ≤ (𝐺 ·ih 𝐺) → (√‘(𝐺 ·ih 𝐺)) ∈ ℝ) |
28 | 3, 24, 27 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐺 ·ih 𝐺)) ∈ ℝ |
29 | hiidge0 27339 | . . . . . 6 ⊢ (𝐹 ∈ ℋ → 0 ≤ (𝐹 ·ih 𝐹)) | |
30 | hiidrcl 27336 | . . . . . . . 8 ⊢ (𝐹 ∈ ℋ → (𝐹 ·ih 𝐹) ∈ ℝ) | |
31 | 2, 30 | ax-mp 5 | . . . . . . 7 ⊢ (𝐹 ·ih 𝐹) ∈ ℝ |
32 | 31 | sqrtcli 13959 | . . . . . 6 ⊢ (0 ≤ (𝐹 ·ih 𝐹) → (√‘(𝐹 ·ih 𝐹)) ∈ ℝ) |
33 | 2, 29, 32 | mp2b 10 | . . . . 5 ⊢ (√‘(𝐹 ·ih 𝐹)) ∈ ℝ |
34 | 28, 33 | remulcli 9933 | . . . 4 ⊢ ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))) ∈ ℝ |
35 | 23, 34 | remulcli 9933 | . . 3 ⊢ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) ∈ ℝ |
36 | 13, 22, 35 | letri 10045 | . 2 ⊢ (((((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ∧ (abs‘-(((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹)))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) → (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹))))) |
37 | 16, 20, 36 | mp2an 704 | 1 ⊢ (((∗‘𝑆) · (𝐹 ·ih 𝐺)) + (𝑆 · (𝐺 ·ih 𝐹))) ≤ (2 · ((√‘(𝐺 ·ih 𝐺)) · (√‘(𝐹 ·ih 𝐹)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ‘cfv 5804 (class class class)co 6549 ℂcc 9813 ℝcr 9814 0cc0 9815 1c1 9816 + caddc 9818 · cmul 9820 ≤ cle 9954 -cneg 10146 2c2 10947 ∗ccj 13684 √csqrt 13821 abscabs 13822 ℋchil 27160 ·ih csp 27163 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 ax-pre-sup 9893 ax-hfvadd 27241 ax-hv0cl 27244 ax-hfvmul 27246 ax-hvmulass 27248 ax-hvmul0 27251 ax-hfi 27320 ax-his1 27323 ax-his2 27324 ax-his3 27325 ax-his4 27326 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-sup 8231 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-div 10564 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-n0 11170 df-z 11255 df-uz 11564 df-rp 11709 df-seq 12664 df-exp 12723 df-cj 13687 df-re 13688 df-im 13689 df-sqrt 13823 df-abs 13824 df-hvsub 27212 |
This theorem is referenced by: normlem7tALT 27360 norm-ii-i 27378 |
Copyright terms: Public domain | W3C validator |