HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnleub Structured version   Visualization version   GIF version

Theorem nmfnleub 28168
Description: An upper bound for the norm of a functional. (Contributed by NM, 24-May-2006.) (Revised by Mario Carneiro, 7-Sep-2014.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnleub ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑇

Proof of Theorem nmfnleub
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nmfnval 28119 . . . 4 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
21adantr 480 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (normfn𝑇) = sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ))
32breq1d 4593 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴))
4 nmfnsetre 28120 . . . . 5 (𝑇: ℋ⟶ℂ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ)
5 ressxr 9962 . . . . 5 ℝ ⊆ ℝ*
64, 5syl6ss 3580 . . . 4 (𝑇: ℋ⟶ℂ → {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ*)
7 supxrleub 12028 . . . 4 (({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))} ⊆ ℝ*𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴))
86, 7sylan 487 . . 3 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴))
9 ancom 465 . . . . . . 7 (((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ (𝑦 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1))
10 eqeq1 2614 . . . . . . . 8 (𝑦 = 𝑧 → (𝑦 = (abs‘(𝑇𝑥)) ↔ 𝑧 = (abs‘(𝑇𝑥))))
1110anbi1d 737 . . . . . . 7 (𝑦 = 𝑧 → ((𝑦 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) ↔ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
129, 11syl5bb 271 . . . . . 6 (𝑦 = 𝑧 → (((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1312rexbidv 3034 . . . . 5 (𝑦 = 𝑧 → (∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥))) ↔ ∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1)))
1413ralab 3334 . . . 4 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
15 ralcom4 3197 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
16 impexp 461 . . . . . . . 8 (((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
1716albii 1737 . . . . . . 7 (∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)))
18 fvex 6113 . . . . . . . 8 (abs‘(𝑇𝑥)) ∈ V
19 breq1 4586 . . . . . . . . 9 (𝑧 = (abs‘(𝑇𝑥)) → (𝑧𝐴 ↔ (abs‘(𝑇𝑥)) ≤ 𝐴))
2019imbi2d 329 . . . . . . . 8 (𝑧 = (abs‘(𝑇𝑥)) → (((norm𝑥) ≤ 1 → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
2118, 20ceqsalv 3206 . . . . . . 7 (∀𝑧(𝑧 = (abs‘(𝑇𝑥)) → ((norm𝑥) ≤ 1 → 𝑧𝐴)) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
2217, 21bitri 263 . . . . . 6 (∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
2322ralbii 2963 . . . . 5 (∀𝑥 ∈ ℋ ∀𝑧((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
24 r19.23v 3005 . . . . . 6 (∀𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ (∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2524albii 1737 . . . . 5 (∀𝑧𝑥 ∈ ℋ ((𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2615, 23, 253bitr3i 289 . . . 4 (∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴) ↔ ∀𝑧(∃𝑥 ∈ ℋ (𝑧 = (abs‘(𝑇𝑥)) ∧ (norm𝑥) ≤ 1) → 𝑧𝐴))
2714, 26bitr4i 266 . . 3 (∀𝑧 ∈ {𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}𝑧𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴))
288, 27syl6bb 275 . 2 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → (sup({𝑦 ∣ ∃𝑥 ∈ ℋ ((norm𝑥) ≤ 1 ∧ 𝑦 = (abs‘(𝑇𝑥)))}, ℝ*, < ) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
293, 28bitrd 267 1 ((𝑇: ℋ⟶ℂ ∧ 𝐴 ∈ ℝ*) → ((normfn𝑇) ≤ 𝐴 ↔ ∀𝑥 ∈ ℋ ((norm𝑥) ≤ 1 → (abs‘(𝑇𝑥)) ≤ 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383  wal 1473   = wceq 1475  wcel 1977  {cab 2596  wral 2896  wrex 2897  wss 3540   class class class wbr 4583  wf 5800  cfv 5804  supcsup 8229  cc 9813  cr 9814  1c1 9816  *cxr 9952   < clt 9953  cle 9954  abscabs 13822  chil 27160  normcno 27164  normfncnmf 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-hilex 27240
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-nmfn 28088
This theorem is referenced by:  nmfnleub2  28169
  Copyright terms: Public domain W3C validator