HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nmfnval Structured version   Visualization version   GIF version

Theorem nmfnval 28119
Description: Value of the norm of a Hilbert space functional. (Contributed by NM, 11-Feb-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
nmfnval (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
Distinct variable group:   𝑥,𝑦,𝑇

Proof of Theorem nmfnval
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 xrltso 11850 . . 3 < Or ℝ*
21supex 8252 . 2 sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ) ∈ V
3 ax-hilex 27240 . 2 ℋ ∈ V
4 cnex 9896 . 2 ℂ ∈ V
5 fveq1 6102 . . . . . . . 8 (𝑡 = 𝑇 → (𝑡𝑦) = (𝑇𝑦))
65fveq2d 6107 . . . . . . 7 (𝑡 = 𝑇 → (abs‘(𝑡𝑦)) = (abs‘(𝑇𝑦)))
76eqeq2d 2620 . . . . . 6 (𝑡 = 𝑇 → (𝑥 = (abs‘(𝑡𝑦)) ↔ 𝑥 = (abs‘(𝑇𝑦))))
87anbi2d 736 . . . . 5 (𝑡 = 𝑇 → (((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦))) ↔ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))))
98rexbidv 3034 . . . 4 (𝑡 = 𝑇 → (∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦))) ↔ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))))
109abbidv 2728 . . 3 (𝑡 = 𝑇 → {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))} = {𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))})
1110supeq1d 8235 . 2 (𝑡 = 𝑇 → sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))}, ℝ*, < ) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
12 df-nmfn 28088 . 2 normfn = (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↦ sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑡𝑦)))}, ℝ*, < ))
132, 3, 4, 11, 12fvmptmap 7780 1 (𝑇: ℋ⟶ℂ → (normfn𝑇) = sup({𝑥 ∣ ∃𝑦 ∈ ℋ ((norm𝑦) ≤ 1 ∧ 𝑥 = (abs‘(𝑇𝑦)))}, ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1475  {cab 2596  wrex 2897   class class class wbr 4583  wf 5800  cfv 5804  supcsup 8229  cc 9813  1c1 9816  *cxr 9952   < clt 9953  cle 9954  abscabs 13822  chil 27160  normcno 27164  normfncnmf 27192
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-hilex 27240
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-nmfn 28088
This theorem is referenced by:  nmfnxr  28122  nmfnrepnf  28123  nmfnlb  28167  nmfnleub  28168  nmfn0  28230  nmcfnexi  28294  branmfn  28348
  Copyright terms: Public domain W3C validator