Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neglimc Structured version   Visualization version   GIF version

Theorem neglimc 38714
 Description: Limit of the negative function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
neglimc.f 𝐹 = (𝑥𝐴𝐵)
neglimc.g 𝐺 = (𝑥𝐴 ↦ -𝐵)
neglimc.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
neglimc.c (𝜑𝐶 ∈ (𝐹 lim 𝐷))
Assertion
Ref Expression
neglimc (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hints:   𝐵(𝑥)   𝐶(𝑥)   𝐷(𝑥)   𝐹(𝑥)   𝐺(𝑥)

Proof of Theorem neglimc
Dummy variables 𝑣 𝑤 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 limccl 23445 . . . 4 (𝐹 lim 𝐷) ⊆ ℂ
2 neglimc.c . . . 4 (𝜑𝐶 ∈ (𝐹 lim 𝐷))
31, 2sseldi 3566 . . 3 (𝜑𝐶 ∈ ℂ)
43negcld 10258 . 2 (𝜑 → -𝐶 ∈ ℂ)
5 neglimc.b . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝐵 ∈ ℂ)
6 neglimc.f . . . . . . . . 9 𝐹 = (𝑥𝐴𝐵)
75, 6fmptd 6292 . . . . . . . 8 (𝜑𝐹:𝐴⟶ℂ)
86, 5, 2limcmptdm 38702 . . . . . . . 8 (𝜑𝐴 ⊆ ℂ)
9 limcrcl 23444 . . . . . . . . . 10 (𝐶 ∈ (𝐹 lim 𝐷) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
102, 9syl 17 . . . . . . . . 9 (𝜑 → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐷 ∈ ℂ))
1110simp3d 1068 . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
127, 8, 11ellimc3 23449 . . . . . . 7 (𝜑 → (𝐶 ∈ (𝐹 lim 𝐷) ↔ (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))))
132, 12mpbid 221 . . . . . 6 (𝜑 → (𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)))
1413simprd 478 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
1514r19.21bi 2916 . . . 4 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
16 simplll 794 . . . . . . . . 9 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → 𝜑)
17163ad2ant1 1075 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝜑)
18 simp1r 1079 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → 𝑣𝐴)
19 simp3 1056 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤))
20 simp2 1055 . . . . . . . . 9 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦))
2119, 20mpd 15 . . . . . . . 8 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
22 nfv 1830 . . . . . . . . . . . . . . . 16 𝑥(𝜑𝑣𝐴)
23 neglimc.g . . . . . . . . . . . . . . . . . . 19 𝐺 = (𝑥𝐴 ↦ -𝐵)
24 nfmpt1 4675 . . . . . . . . . . . . . . . . . . 19 𝑥(𝑥𝐴 ↦ -𝐵)
2523, 24nfcxfr 2749 . . . . . . . . . . . . . . . . . 18 𝑥𝐺
26 nfcv 2751 . . . . . . . . . . . . . . . . . 18 𝑥𝑣
2725, 26nffv 6110 . . . . . . . . . . . . . . . . 17 𝑥(𝐺𝑣)
28 nfmpt1 4675 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝑥𝐴𝐵)
296, 28nfcxfr 2749 . . . . . . . . . . . . . . . . . . 19 𝑥𝐹
3029, 26nffv 6110 . . . . . . . . . . . . . . . . . 18 𝑥(𝐹𝑣)
3130nfneg 10156 . . . . . . . . . . . . . . . . 17 𝑥-(𝐹𝑣)
3227, 31nfeq 2762 . . . . . . . . . . . . . . . 16 𝑥(𝐺𝑣) = -(𝐹𝑣)
3322, 32nfim 1813 . . . . . . . . . . . . . . 15 𝑥((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
34 eleq1 2676 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝑥𝐴𝑣𝐴))
3534anbi2d 736 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝜑𝑥𝐴) ↔ (𝜑𝑣𝐴)))
36 fveq2 6103 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → (𝐺𝑥) = (𝐺𝑣))
37 fveq2 6103 . . . . . . . . . . . . . . . . . 18 (𝑥 = 𝑣 → (𝐹𝑥) = (𝐹𝑣))
3837negeqd 10154 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑣 → -(𝐹𝑥) = -(𝐹𝑣))
3936, 38eqeq12d 2625 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑣 → ((𝐺𝑥) = -(𝐹𝑥) ↔ (𝐺𝑣) = -(𝐹𝑣)))
4035, 39imbi12d 333 . . . . . . . . . . . . . . 15 (𝑥 = 𝑣 → (((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥)) ↔ ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))))
41 simpr 476 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → 𝑥𝐴)
425negcld 10258 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → -𝐵 ∈ ℂ)
4323fvmpt2 6200 . . . . . . . . . . . . . . . . 17 ((𝑥𝐴 ∧ -𝐵 ∈ ℂ) → (𝐺𝑥) = -𝐵)
4441, 42, 43syl2anc 691 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → (𝐺𝑥) = -𝐵)
456fvmpt2 6200 . . . . . . . . . . . . . . . . . 18 ((𝑥𝐴𝐵 ∈ ℂ) → (𝐹𝑥) = 𝐵)
4641, 5, 45syl2anc 691 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐴) → (𝐹𝑥) = 𝐵)
4746negeqd 10154 . . . . . . . . . . . . . . . 16 ((𝜑𝑥𝐴) → -(𝐹𝑥) = -𝐵)
4844, 47eqtr4d 2647 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐴) → (𝐺𝑥) = -(𝐹𝑥))
4933, 40, 48chvar 2250 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐺𝑣) = -(𝐹𝑣))
5049oveq1d 6564 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = (-(𝐹𝑣) − -𝐶))
517ffvelrnda 6267 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → (𝐹𝑣) ∈ ℂ)
523adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑣𝐴) → 𝐶 ∈ ℂ)
5351, 52negsubdi3d 38447 . . . . . . . . . . . . 13 ((𝜑𝑣𝐴) → -((𝐹𝑣) − 𝐶) = (-(𝐹𝑣) − -𝐶))
5450, 53eqtr4d 2647 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐺𝑣) − -𝐶) = -((𝐹𝑣) − 𝐶))
5554fveq2d 6107 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘-((𝐹𝑣) − 𝐶)))
5651, 52subcld 10271 . . . . . . . . . . . 12 ((𝜑𝑣𝐴) → ((𝐹𝑣) − 𝐶) ∈ ℂ)
5756absnegd 14036 . . . . . . . . . . 11 ((𝜑𝑣𝐴) → (abs‘-((𝐹𝑣) − 𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5855, 57eqtrd 2644 . . . . . . . . . 10 ((𝜑𝑣𝐴) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
5958adantr 480 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) = (abs‘((𝐹𝑣) − 𝐶)))
60 simpr 476 . . . . . . . . 9 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦)
6159, 60eqbrtrd 4605 . . . . . . . 8 (((𝜑𝑣𝐴) ∧ (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
6217, 18, 21, 61syl21anc 1317 . . . . . . 7 (((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) ∧ ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) ∧ (𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤)) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)
63623exp 1256 . . . . . 6 ((((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) ∧ 𝑣𝐴) → (((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6463ralimdva 2945 . . . . 5 (((𝜑𝑦 ∈ ℝ+) ∧ 𝑤 ∈ ℝ+) → (∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∀𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6564reximdva 3000 . . . 4 ((𝜑𝑦 ∈ ℝ+) → (∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐹𝑣) − 𝐶)) < 𝑦) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦)))
6615, 65mpd 15 . . 3 ((𝜑𝑦 ∈ ℝ+) → ∃𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6766ralrimiva 2949 . 2 (𝜑 → ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))
6842, 23fmptd 6292 . . 3 (𝜑𝐺:𝐴⟶ℂ)
6968, 8, 11ellimc3 23449 . 2 (𝜑 → (-𝐶 ∈ (𝐺 lim 𝐷) ↔ (-𝐶 ∈ ℂ ∧ ∀𝑦 ∈ ℝ+𝑤 ∈ ℝ+𝑣𝐴 ((𝑣𝐷 ∧ (abs‘(𝑣𝐷)) < 𝑤) → (abs‘((𝐺𝑣) − -𝐶)) < 𝑦))))
704, 67, 69mpbir2and 959 1 (𝜑 → -𝐶 ∈ (𝐺 lim 𝐷))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897   ⊆ wss 3540   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ℂcc 9813   < clt 9953   − cmin 10145  -cneg 10146  ℝ+crp 11708  abscabs 13822   limℂ climc 23432 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fi 8200  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-topsp 20524  df-cnp 20842  df-xms 21935  df-ms 21936  df-limc 23436 This theorem is referenced by:  sublimc  38719  reclimc  38720
 Copyright terms: Public domain W3C validator