MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mreclatdemoBAD Structured version   Visualization version   GIF version

Theorem mreclatdemoBAD 20710
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 17010. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6511 update): This proof uses the old df-clat 16931 and references the required instance of mreclatBAD 17010 as a hypothesis. When mreclatBAD 17010 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below.
Hypothesis
Ref Expression
mreclatBAD. (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Assertion
Ref Expression
mreclatdemoBAD (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)

Proof of Theorem mreclatdemoBAD
StepHypRef Expression
1 fvex 6113 . . . . 5 (TopOpen‘𝑊) ∈ V
21uniex 6851 . . . 4 (TopOpen‘𝑊) ∈ V
3 mremre 16087 . . . 4 ( (TopOpen‘𝑊) ∈ V → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
42, 3mp1i 13 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)))
5 inss2 3796 . . . . . 6 (TopSp ∩ LMod) ⊆ LMod
65sseli 3564 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod)
7 eqid 2610 . . . . . 6 (Base‘𝑊) = (Base‘𝑊)
8 eqid 2610 . . . . . 6 (LSubSp‘𝑊) = (LSubSp‘𝑊)
97, 8lssmre 18787 . . . . 5 (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
106, 9syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊)))
11 inss1 3795 . . . . . 6 (TopSp ∩ LMod) ⊆ TopSp
1211sseli 3564 . . . . 5 (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp)
13 eqid 2610 . . . . . . 7 (TopOpen‘𝑊) = (TopOpen‘𝑊)
147, 13tpsuni 20553 . . . . . 6 (𝑊 ∈ TopSp → (Base‘𝑊) = (TopOpen‘𝑊))
1514fveq2d 6107 . . . . 5 (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
1612, 15syl 17 . . . 4 (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘ (TopOpen‘𝑊)))
1710, 16eleqtrd 2690 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)))
1813tpstop 20554 . . . 4 (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top)
19 eqid 2610 . . . . 5 (TopOpen‘𝑊) = (TopOpen‘𝑊)
2019cldmre 20692 . . . 4 ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
2112, 18, 203syl 18 . . 3 (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊)))
22 mreincl 16082 . . 3 (((Moore‘ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
234, 17, 21, 22syl3anc 1318 . 2 (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)))
24 mreclatBAD. . 2 (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
2523, 24syl 17 1 (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  Vcvv 3173  cin 3539  𝒫 cpw 4108   cuni 4372  cfv 5804  Basecbs 15695  TopOpenctopn 15905  Moorecmre 16065  CLatccla 16930  toInccipo 16974  LModclmod 18686  LSubSpclss 18753  Topctop 20517  TopSpctps 20519  Clsdccld 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-mre 16069  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-lmod 18688  df-lss 18754  df-top 20521  df-topon 20523  df-topsp 20524  df-cld 20633
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator