Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mreclatdemoBAD | Structured version Visualization version GIF version |
Description: The closed subspaces of a topology-bearing module form a complete lattice. Demonstration for mreclatBAD 17010. (Contributed by Stefan O'Rear, 31-Jan-2015.) TODO (df-riota 6511 update): This proof uses the old df-clat 16931 and references the required instance of mreclatBAD 17010 as a hypothesis. When mreclatBAD 17010 is corrected to become mreclat, delete this theorem and uncomment the mreclatdemo below. |
Ref | Expression |
---|---|
mreclatBAD. | ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
Ref | Expression |
---|---|
mreclatdemoBAD | ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6113 | . . . . 5 ⊢ (TopOpen‘𝑊) ∈ V | |
2 | 1 | uniex 6851 | . . . 4 ⊢ ∪ (TopOpen‘𝑊) ∈ V |
3 | mremre 16087 | . . . 4 ⊢ (∪ (TopOpen‘𝑊) ∈ V → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊))) |
5 | inss2 3796 | . . . . . 6 ⊢ (TopSp ∩ LMod) ⊆ LMod | |
6 | 5 | sseli 3564 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ LMod) |
7 | eqid 2610 | . . . . . 6 ⊢ (Base‘𝑊) = (Base‘𝑊) | |
8 | eqid 2610 | . . . . . 6 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
9 | 7, 8 | lssmre 18787 | . . . . 5 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
10 | 6, 9 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘(Base‘𝑊))) |
11 | inss1 3795 | . . . . . 6 ⊢ (TopSp ∩ LMod) ⊆ TopSp | |
12 | 11 | sseli 3564 | . . . . 5 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → 𝑊 ∈ TopSp) |
13 | eqid 2610 | . . . . . . 7 ⊢ (TopOpen‘𝑊) = (TopOpen‘𝑊) | |
14 | 7, 13 | tpsuni 20553 | . . . . . 6 ⊢ (𝑊 ∈ TopSp → (Base‘𝑊) = ∪ (TopOpen‘𝑊)) |
15 | 14 | fveq2d 6107 | . . . . 5 ⊢ (𝑊 ∈ TopSp → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
16 | 12, 15 | syl 17 | . . . 4 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Moore‘(Base‘𝑊)) = (Moore‘∪ (TopOpen‘𝑊))) |
17 | 10, 16 | eleqtrd 2690 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
18 | 13 | tpstop 20554 | . . . 4 ⊢ (𝑊 ∈ TopSp → (TopOpen‘𝑊) ∈ Top) |
19 | eqid 2610 | . . . . 5 ⊢ ∪ (TopOpen‘𝑊) = ∪ (TopOpen‘𝑊) | |
20 | 19 | cldmre 20692 | . . . 4 ⊢ ((TopOpen‘𝑊) ∈ Top → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
21 | 12, 18, 20 | 3syl 18 | . . 3 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
22 | mreincl 16082 | . . 3 ⊢ (((Moore‘∪ (TopOpen‘𝑊)) ∈ (Moore‘𝒫 ∪ (TopOpen‘𝑊)) ∧ (LSubSp‘𝑊) ∈ (Moore‘∪ (TopOpen‘𝑊)) ∧ (Clsd‘(TopOpen‘𝑊)) ∈ (Moore‘∪ (TopOpen‘𝑊))) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) | |
23 | 4, 17, 21, 22 | syl3anc 1318 | . 2 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → ((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊))) |
24 | mreclatBAD. | . 2 ⊢ (((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊))) ∈ (Moore‘∪ (TopOpen‘𝑊)) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) | |
25 | 23, 24 | syl 17 | 1 ⊢ (𝑊 ∈ (TopSp ∩ LMod) → (toInc‘((LSubSp‘𝑊) ∩ (Clsd‘(TopOpen‘𝑊)))) ∈ CLat) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∩ cin 3539 𝒫 cpw 4108 ∪ cuni 4372 ‘cfv 5804 Basecbs 15695 TopOpenctopn 15905 Moorecmre 16065 CLatccla 16930 toInccipo 16974 LModclmod 18686 LSubSpclss 18753 Topctop 20517 TopSpctps 20519 Clsdccld 20630 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-iin 4458 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-0g 15925 df-mre 16069 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-grp 17248 df-minusg 17249 df-sbg 17250 df-mgp 18313 df-ur 18325 df-ring 18372 df-lmod 18688 df-lss 18754 df-top 20521 df-topon 20523 df-topsp 20524 df-cld 20633 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |