Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mremre Structured version   Visualization version   GIF version

Theorem mremre 16087
 Description: The Moore collections of subsets of a space, viewed as a kind of subset of the power set, form a Moore collection in their own right on the power set. (Contributed by Stefan O'Rear, 30-Jan-2015.)
Assertion
Ref Expression
mremre (𝑋𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋))

Proof of Theorem mremre
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mresspw 16075 . . . . 5 (𝑎 ∈ (Moore‘𝑋) → 𝑎 ⊆ 𝒫 𝑋)
2 selpw 4115 . . . . 5 (𝑎 ∈ 𝒫 𝒫 𝑋𝑎 ⊆ 𝒫 𝑋)
31, 2sylibr 223 . . . 4 (𝑎 ∈ (Moore‘𝑋) → 𝑎 ∈ 𝒫 𝒫 𝑋)
43ssriv 3572 . . 3 (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋
54a1i 11 . 2 (𝑋𝑉 → (Moore‘𝑋) ⊆ 𝒫 𝒫 𝑋)
6 ssid 3587 . . . 4 𝒫 𝑋 ⊆ 𝒫 𝑋
76a1i 11 . . 3 (𝑋𝑉 → 𝒫 𝑋 ⊆ 𝒫 𝑋)
8 pwidg 4121 . . 3 (𝑋𝑉𝑋 ∈ 𝒫 𝑋)
9 intssuni2 4437 . . . . . 6 ((𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 𝒫 𝑋)
1093adant1 1072 . . . . 5 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 𝒫 𝑋)
11 unipw 4845 . . . . 5 𝒫 𝑋 = 𝑋
1210, 11syl6sseq 3614 . . . 4 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎𝑋)
13 elpw2g 4754 . . . . 5 (𝑋𝑉 → ( 𝑎 ∈ 𝒫 𝑋 𝑎𝑋))
14133ad2ant1 1075 . . . 4 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → ( 𝑎 ∈ 𝒫 𝑋 𝑎𝑋))
1512, 14mpbird 246 . . 3 ((𝑋𝑉𝑎 ⊆ 𝒫 𝑋𝑎 ≠ ∅) → 𝑎 ∈ 𝒫 𝑋)
167, 8, 15ismred 16085 . 2 (𝑋𝑉 → 𝒫 𝑋 ∈ (Moore‘𝑋))
17 n0 3890 . . . . 5 (𝑎 ≠ ∅ ↔ ∃𝑏 𝑏𝑎)
18 intss1 4427 . . . . . . . . 9 (𝑏𝑎 𝑎𝑏)
1918adantl 481 . . . . . . . 8 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑎𝑏)
20 simpr 476 . . . . . . . . . 10 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → 𝑎 ⊆ (Moore‘𝑋))
2120sselda 3568 . . . . . . . . 9 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑏 ∈ (Moore‘𝑋))
22 mresspw 16075 . . . . . . . . 9 (𝑏 ∈ (Moore‘𝑋) → 𝑏 ⊆ 𝒫 𝑋)
2321, 22syl 17 . . . . . . . 8 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑏 ⊆ 𝒫 𝑋)
2419, 23sstrd 3578 . . . . . . 7 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) ∧ 𝑏𝑎) → 𝑎 ⊆ 𝒫 𝑋)
2524ex 449 . . . . . 6 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (𝑏𝑎 𝑎 ⊆ 𝒫 𝑋))
2625exlimdv 1848 . . . . 5 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (∃𝑏 𝑏𝑎 𝑎 ⊆ 𝒫 𝑋))
2717, 26syl5bi 231 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋)) → (𝑎 ≠ ∅ → 𝑎 ⊆ 𝒫 𝑋))
28273impia 1253 . . 3 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ 𝒫 𝑋)
29 simp2 1055 . . . . . . 7 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋))
3029sselda 3568 . . . . . 6 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏𝑎) → 𝑏 ∈ (Moore‘𝑋))
31 mre1cl 16077 . . . . . 6 (𝑏 ∈ (Moore‘𝑋) → 𝑋𝑏)
3230, 31syl 17 . . . . 5 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏𝑎) → 𝑋𝑏)
3332ralrimiva 2949 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → ∀𝑏𝑎 𝑋𝑏)
34 elintg 4418 . . . . 5 (𝑋𝑉 → (𝑋 𝑎 ↔ ∀𝑏𝑎 𝑋𝑏))
35343ad2ant1 1075 . . . 4 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → (𝑋 𝑎 ↔ ∀𝑏𝑎 𝑋𝑏))
3633, 35mpbird 246 . . 3 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑋 𝑎)
37 simp12 1085 . . . . . . 7 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → 𝑎 ⊆ (Moore‘𝑋))
3837sselda 3568 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑐 ∈ (Moore‘𝑋))
39 simpl2 1058 . . . . . . 7 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏 𝑎)
40 intss1 4427 . . . . . . . 8 (𝑐𝑎 𝑎𝑐)
4140adantl 481 . . . . . . 7 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑎𝑐)
4239, 41sstrd 3578 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏𝑐)
43 simpl3 1059 . . . . . 6 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏 ≠ ∅)
44 mreintcl 16078 . . . . . 6 ((𝑐 ∈ (Moore‘𝑋) ∧ 𝑏𝑐𝑏 ≠ ∅) → 𝑏𝑐)
4538, 42, 43, 44syl3anc 1318 . . . . 5 ((((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) ∧ 𝑐𝑎) → 𝑏𝑐)
4645ralrimiva 2949 . . . 4 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → ∀𝑐𝑎 𝑏𝑐)
47 intex 4747 . . . . . 6 (𝑏 ≠ ∅ ↔ 𝑏 ∈ V)
48 elintg 4418 . . . . . 6 ( 𝑏 ∈ V → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
4947, 48sylbi 206 . . . . 5 (𝑏 ≠ ∅ → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
50493ad2ant3 1077 . . . 4 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → ( 𝑏 𝑎 ↔ ∀𝑐𝑎 𝑏𝑐))
5146, 50mpbird 246 . . 3 (((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) ∧ 𝑏 𝑎𝑏 ≠ ∅) → 𝑏 𝑎)
5228, 36, 51ismred 16085 . 2 ((𝑋𝑉𝑎 ⊆ (Moore‘𝑋) ∧ 𝑎 ≠ ∅) → 𝑎 ∈ (Moore‘𝑋))
535, 16, 52ismred 16085 1 (𝑋𝑉 → (Moore‘𝑋) ∈ (Moore‘𝒫 𝑋))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372  ∩ cint 4410  ‘cfv 5804  Moorecmre 16065 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-int 4411  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-mre 16069 This theorem is referenced by:  mreacs  16142  mreclatdemoBAD  20710
 Copyright terms: Public domain W3C validator