Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpsuni | Structured version Visualization version GIF version |
Description: The base set of a topological space. (Contributed by FL, 27-Jun-2014.) |
Ref | Expression |
---|---|
istps.a | ⊢ 𝐴 = (Base‘𝐾) |
istps.j | ⊢ 𝐽 = (TopOpen‘𝐾) |
Ref | Expression |
---|---|
tpsuni | ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | istps.a | . . 3 ⊢ 𝐴 = (Base‘𝐾) | |
2 | istps.j | . . 3 ⊢ 𝐽 = (TopOpen‘𝐾) | |
3 | 1, 2 | istps2 20552 | . 2 ⊢ (𝐾 ∈ TopSp ↔ (𝐽 ∈ Top ∧ 𝐴 = ∪ 𝐽)) |
4 | 3 | simprbi 479 | 1 ⊢ (𝐾 ∈ TopSp → 𝐴 = ∪ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1475 ∈ wcel 1977 ∪ cuni 4372 ‘cfv 5804 Basecbs 15695 TopOpenctopn 15905 Topctop 20517 TopSpctps 20519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-rab 2905 df-v 3175 df-sbc 3403 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-op 4132 df-uni 4373 df-br 4584 df-opab 4644 df-mpt 4645 df-id 4953 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-iota 5768 df-fun 5806 df-fv 5812 df-top 20521 df-topon 20523 df-topsp 20524 |
This theorem is referenced by: mreclatdemoBAD 20710 haustsms 21749 cnextucn 21917 ressxms 22140 rlmbn 22965 rrhf 29370 esumcocn 29469 sibf0 29723 sibfof 29729 sitgclg 29731 sitgaddlemb 29737 sitmcl 29740 binomcxplemdvbinom 37574 binomcxplemnotnn0 37577 qndenserrn 39195 |
Copyright terms: Public domain | W3C validator |