Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetralt2 Structured version   Visualization version   GIF version

Theorem mdetralt2 20234
 Description: The determinant function is alternating regarding rows (matrix is given explicitly by its entries). (Contributed by SO, 16-Jul-2018.)
Hypotheses
Ref Expression
mdetralt2.d 𝐷 = (𝑁 maDet 𝑅)
mdetralt2.k 𝐾 = (Base‘𝑅)
mdetralt2.z 0 = (0g𝑅)
mdetralt2.r (𝜑𝑅 ∈ CRing)
mdetralt2.n (𝜑𝑁 ∈ Fin)
mdetralt2.x ((𝜑𝑗𝑁) → 𝑋𝐾)
mdetralt2.y ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
mdetralt2.i (𝜑𝐼𝑁)
mdetralt2.j (𝜑𝐽𝑁)
mdetralt2.ij (𝜑𝐼𝐽)
Assertion
Ref Expression
mdetralt2 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 )
Distinct variable groups:   𝜑,𝑖,𝑗   𝑖,𝐾,𝑗   𝑖,𝑁,𝑗   𝑖,𝐼,𝑗   𝑖,𝐽,𝑗   𝑖,𝑋
Allowed substitution hints:   𝐷(𝑖,𝑗)   𝑅(𝑖,𝑗)   𝑋(𝑗)   𝑌(𝑖,𝑗)   0 (𝑖,𝑗)

Proof of Theorem mdetralt2
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mdetralt2.d . 2 𝐷 = (𝑁 maDet 𝑅)
2 eqid 2610 . 2 (𝑁 Mat 𝑅) = (𝑁 Mat 𝑅)
3 eqid 2610 . 2 (Base‘(𝑁 Mat 𝑅)) = (Base‘(𝑁 Mat 𝑅))
4 mdetralt2.z . 2 0 = (0g𝑅)
5 mdetralt2.r . 2 (𝜑𝑅 ∈ CRing)
6 mdetralt2.k . . 3 𝐾 = (Base‘𝑅)
7 mdetralt2.n . . 3 (𝜑𝑁 ∈ Fin)
8 mdetralt2.x . . . . 5 ((𝜑𝑗𝑁) → 𝑋𝐾)
983adant2 1073 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → 𝑋𝐾)
10 mdetralt2.y . . . . 5 ((𝜑𝑖𝑁𝑗𝑁) → 𝑌𝐾)
119, 10ifcld 4081 . . . 4 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐽, 𝑋, 𝑌) ∈ 𝐾)
129, 11ifcld 4081 . . 3 ((𝜑𝑖𝑁𝑗𝑁) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) ∈ 𝐾)
132, 6, 3, 7, 5, 12matbas2d 20048 . 2 (𝜑 → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) ∈ (Base‘(𝑁 Mat 𝑅)))
14 mdetralt2.i . 2 (𝜑𝐼𝑁)
15 mdetralt2.j . 2 (𝜑𝐽𝑁)
16 mdetralt2.ij . 2 (𝜑𝐼𝐽)
17 eqidd 2611 . . . . 5 ((𝜑𝑤𝑁) → (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))) = (𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌))))
18 iftrue 4042 . . . . . . 7 (𝑖 = 𝐼 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
1918ad2antrl 760 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
20 csbeq1a 3508 . . . . . . 7 (𝑗 = 𝑤𝑋 = 𝑤 / 𝑗𝑋)
2120ad2antll 761 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → 𝑋 = 𝑤 / 𝑗𝑋)
2219, 21eqtrd 2644 . . . . 5 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐼𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑤 / 𝑗𝑋)
23 eqidd 2611 . . . . 5 (((𝜑𝑤𝑁) ∧ 𝑖 = 𝐼) → 𝑁 = 𝑁)
2414adantr 480 . . . . 5 ((𝜑𝑤𝑁) → 𝐼𝑁)
25 simpr 476 . . . . 5 ((𝜑𝑤𝑁) → 𝑤𝑁)
26 nfv 1830 . . . . . . 7 𝑗(𝜑𝑤𝑁)
27 nfcsb1v 3515 . . . . . . . 8 𝑗𝑤 / 𝑗𝑋
2827nfel1 2765 . . . . . . 7 𝑗𝑤 / 𝑗𝑋𝐾
2926, 28nfim 1813 . . . . . 6 𝑗((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)
30 eleq1 2676 . . . . . . . 8 (𝑗 = 𝑤 → (𝑗𝑁𝑤𝑁))
3130anbi2d 736 . . . . . . 7 (𝑗 = 𝑤 → ((𝜑𝑗𝑁) ↔ (𝜑𝑤𝑁)))
3220eleq1d 2672 . . . . . . 7 (𝑗 = 𝑤 → (𝑋𝐾𝑤 / 𝑗𝑋𝐾))
3331, 32imbi12d 333 . . . . . 6 (𝑗 = 𝑤 → (((𝜑𝑗𝑁) → 𝑋𝐾) ↔ ((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)))
3429, 33, 8chvar 2250 . . . . 5 ((𝜑𝑤𝑁) → 𝑤 / 𝑗𝑋𝐾)
35 nfv 1830 . . . . 5 𝑖(𝜑𝑤𝑁)
36 nfcv 2751 . . . . 5 𝑗𝐼
37 nfcv 2751 . . . . 5 𝑖𝑤
38 nfcv 2751 . . . . 5 𝑖𝑤 / 𝑗𝑋
3917, 22, 23, 24, 25, 34, 35, 26, 36, 37, 38, 27ovmpt2dxf 6684 . . . 4 ((𝜑𝑤𝑁) → (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = 𝑤 / 𝑗𝑋)
40 iftrue 4042 . . . . . . . . 9 (𝑖 = 𝐽 → if(𝑖 = 𝐽, 𝑋, 𝑌) = 𝑋)
4140ifeq2d 4055 . . . . . . . 8 (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = if(𝑖 = 𝐼, 𝑋, 𝑋))
42 ifid 4075 . . . . . . . 8 if(𝑖 = 𝐼, 𝑋, 𝑋) = 𝑋
4341, 42syl6eq 2660 . . . . . . 7 (𝑖 = 𝐽 → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
4443ad2antrl 760 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑋)
4520ad2antll 761 . . . . . 6 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → 𝑋 = 𝑤 / 𝑗𝑋)
4644, 45eqtrd 2644 . . . . 5 (((𝜑𝑤𝑁) ∧ (𝑖 = 𝐽𝑗 = 𝑤)) → if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)) = 𝑤 / 𝑗𝑋)
47 eqidd 2611 . . . . 5 (((𝜑𝑤𝑁) ∧ 𝑖 = 𝐽) → 𝑁 = 𝑁)
4815adantr 480 . . . . 5 ((𝜑𝑤𝑁) → 𝐽𝑁)
49 nfcv 2751 . . . . 5 𝑗𝐽
5017, 46, 47, 48, 25, 34, 35, 26, 49, 37, 38, 27ovmpt2dxf 6684 . . . 4 ((𝜑𝑤𝑁) → (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = 𝑤 / 𝑗𝑋)
5139, 50eqtr4d 2647 . . 3 ((𝜑𝑤𝑁) → (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤))
5251ralrimiva 2949 . 2 (𝜑 → ∀𝑤𝑁 (𝐼(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤) = (𝐽(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))𝑤))
531, 2, 3, 4, 5, 13, 14, 15, 16, 52mdetralt 20233 1 (𝜑 → (𝐷‘(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐼, 𝑋, if(𝑖 = 𝐽, 𝑋, 𝑌)))) = 0 )
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ⦋csb 3499  ifcif 4036  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  Basecbs 15695  0gc0g 15923  CRingccrg 18371   Mat cmat 20032   maDet cmdat 20209 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-addf 9894  ax-mulf 9895 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-xor 1457  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-xnn0 11241  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-lsw 13155  df-concat 13156  df-s1 13157  df-substr 13158  df-splice 13159  df-reverse 13160  df-s2 13444  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-mulg 17364  df-subg 17414  df-ghm 17481  df-gim 17524  df-cntz 17573  df-oppg 17599  df-symg 17621  df-pmtr 17685  df-psgn 17734  df-evpm 17735  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-dvr 18506  df-rnghom 18538  df-drng 18572  df-subrg 18601  df-sra 18993  df-rgmod 18994  df-cnfld 19568  df-zring 19638  df-zrh 19671  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-mdet 20210 This theorem is referenced by:  mdetero  20235  madurid  20269
 Copyright terms: Public domain W3C validator