Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mavmulfv Structured version   Visualization version   GIF version

Theorem mavmulfv 20171
 Description: A cell/element in the vector resulting from a multiplication of a vector with a square matrix. (Contributed by AV, 6-Dec-2018.) (Revised by AV, 18-Feb-2019.) (Revised by AV, 23-Feb-2019.)
Hypotheses
Ref Expression
mavmulval.a 𝐴 = (𝑁 Mat 𝑅)
mavmulval.m × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
mavmulval.b 𝐵 = (Base‘𝑅)
mavmulval.t · = (.r𝑅)
mavmulval.r (𝜑𝑅𝑉)
mavmulval.n (𝜑𝑁 ∈ Fin)
mavmulval.x (𝜑𝑋 ∈ (Base‘𝐴))
mavmulval.y (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
mavmulfv.i (𝜑𝐼𝑁)
Assertion
Ref Expression
mavmulfv (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))))
Distinct variable groups:   𝑗,𝑁   𝑅,𝑗   𝑗,𝑋   𝑗,𝑌   𝜑,𝑗   𝑗,𝐼
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑗)   · (𝑗)   × (𝑗)   𝑉(𝑗)

Proof of Theorem mavmulfv
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 mavmulval.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 mavmulval.m . . 3 × = (𝑅 maVecMul ⟨𝑁, 𝑁⟩)
3 mavmulval.b . . 3 𝐵 = (Base‘𝑅)
4 mavmulval.t . . 3 · = (.r𝑅)
5 mavmulval.r . . 3 (𝜑𝑅𝑉)
6 mavmulval.n . . 3 (𝜑𝑁 ∈ Fin)
7 mavmulval.x . . 3 (𝜑𝑋 ∈ (Base‘𝐴))
8 mavmulval.y . . 3 (𝜑𝑌 ∈ (𝐵𝑚 𝑁))
91, 2, 3, 4, 5, 6, 7, 8mavmulval 20170 . 2 (𝜑 → (𝑋 × 𝑌) = (𝑖𝑁 ↦ (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))))))
10 oveq1 6556 . . . . . 6 (𝑖 = 𝐼 → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
1110adantl 481 . . . . 5 ((𝜑𝑖 = 𝐼) → (𝑖𝑋𝑗) = (𝐼𝑋𝑗))
1211oveq1d 6564 . . . 4 ((𝜑𝑖 = 𝐼) → ((𝑖𝑋𝑗) · (𝑌𝑗)) = ((𝐼𝑋𝑗) · (𝑌𝑗)))
1312mpteq2dv 4673 . . 3 ((𝜑𝑖 = 𝐼) → (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗))) = (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗))))
1413oveq2d 6565 . 2 ((𝜑𝑖 = 𝐼) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑋𝑗) · (𝑌𝑗)))) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))))
15 mavmulfv.i . 2 (𝜑𝐼𝑁)
16 ovex 6577 . . 3 (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))) ∈ V
1716a1i 11 . 2 (𝜑 → (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))) ∈ V)
189, 14, 15, 17fvmptd 6197 1 (𝜑 → ((𝑋 × 𝑌)‘𝐼) = (𝑅 Σg (𝑗𝑁 ↦ ((𝐼𝑋𝑗) · (𝑌𝑗)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ⟨cop 4131   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  Fincfn 7841  Basecbs 15695  .rcmulr 15769   Σg cgsu 15924   Mat cmat 20032   maVecMul cmvmul 20165 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mat 20033  df-mvmul 20166 This theorem is referenced by:  mavmulass  20174  mulmarep1gsum2  20199
 Copyright terms: Public domain W3C validator