Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  matinvgcell Structured version   Visualization version   GIF version

Theorem matinvgcell 20060
 Description: Additive inversion in the matrix ring is cell-wise. (Contributed by AV, 17-Nov-2019.)
Hypotheses
Ref Expression
matplusgcell.a 𝐴 = (𝑁 Mat 𝑅)
matplusgcell.b 𝐵 = (Base‘𝐴)
matinvgcell.v 𝑉 = (invg𝑅)
matinvgcell.w 𝑊 = (invg𝐴)
Assertion
Ref Expression
matinvgcell ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))

Proof of Theorem matinvgcell
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 matplusgcell.a . . . . . . . . . 10 𝐴 = (𝑁 Mat 𝑅)
2 matplusgcell.b . . . . . . . . . 10 𝐵 = (Base‘𝐴)
31, 2matrcl 20037 . . . . . . . . 9 (𝑋𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
43simpld 474 . . . . . . . 8 (𝑋𝐵𝑁 ∈ Fin)
54adantl 481 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑁 ∈ Fin)
6 simpl 472 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
71matgrp 20055 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Grp)
85, 6, 7syl2anc 691 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝐴 ∈ Grp)
9 eqid 2610 . . . . . . 7 (0g𝐴) = (0g𝐴)
102, 9grpidcl 17273 . . . . . 6 (𝐴 ∈ Grp → (0g𝐴) ∈ 𝐵)
118, 10syl 17 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) ∈ 𝐵)
12 simpr 476 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1311, 12jca 553 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
14133adant3 1074 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝐴) ∈ 𝐵𝑋𝐵))
15 eqid 2610 . . . 4 (-g𝐴) = (-g𝐴)
16 eqid 2610 . . . 4 (-g𝑅) = (-g𝑅)
171, 2, 15, 16matsubgcell 20059 . . 3 ((𝑅 ∈ Ring ∧ ((0g𝐴) ∈ 𝐵𝑋𝐵) ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
1814, 17syld3an2 1365 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
19 matinvgcell.w . . . . . 6 𝑊 = (invg𝐴)
202, 15, 19, 9grpinvval2 17321 . . . . 5 ((𝐴 ∈ Grp ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
218, 12, 20syl2anc 691 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
22213adant3 1074 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑊𝑋) = ((0g𝐴)(-g𝐴)𝑋))
2322oveqd 6566 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝐼((0g𝐴)(-g𝐴)𝑋)𝐽))
24 ringgrp 18375 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
25243ad2ant1 1075 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑅 ∈ Grp)
26 simp3 1056 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁))
272eleq2i 2680 . . . . . . . 8 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2827biimpi 205 . . . . . . 7 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
29283ad2ant2 1076 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝑋 ∈ (Base‘𝐴))
30 df-3an 1033 . . . . . 6 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) ↔ ((𝐼𝑁𝐽𝑁) ∧ 𝑋 ∈ (Base‘𝐴)))
3126, 29, 30sylanbrc 695 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)))
32 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
331, 32matecl 20050 . . . . 5 ((𝐼𝑁𝐽𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
3431, 33syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼𝑋𝐽) ∈ (Base‘𝑅))
35 matinvgcell.v . . . . 5 𝑉 = (invg𝑅)
36 eqid 2610 . . . . 5 (0g𝑅) = (0g𝑅)
3732, 16, 35, 36grpinvval2 17321 . . . 4 ((𝑅 ∈ Grp ∧ (𝐼𝑋𝐽) ∈ (Base‘𝑅)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
3825, 34, 37syl2anc 691 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)))
394anim1i 590 . . . . . . . . 9 ((𝑋𝐵𝑅 ∈ Ring) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
4039ancoms 468 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring))
411, 36mat0op 20044 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
4240, 41syl 17 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
43423adant3 1074 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
44 eqidd 2611 . . . . . 6 (((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) ∧ (𝑥 = 𝐼𝑦 = 𝐽)) → (0g𝑅) = (0g𝑅))
4526simpld 474 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐼𝑁)
46 simp3r 1083 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → 𝐽𝑁)
47 fvex 6113 . . . . . . 7 (0g𝑅) ∈ V
4847a1i 11 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) ∈ V)
4943, 44, 45, 46, 48ovmpt2d 6686 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(0g𝐴)𝐽) = (0g𝑅))
5049eqcomd 2616 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (0g𝑅) = (𝐼(0g𝐴)𝐽))
5150oveq1d 6564 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → ((0g𝑅)(-g𝑅)(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5238, 51eqtrd 2644 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝑉‘(𝐼𝑋𝐽)) = ((𝐼(0g𝐴)𝐽)(-g𝑅)(𝐼𝑋𝐽)))
5318, 23, 523eqtr4d 2654 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵 ∧ (𝐼𝑁𝐽𝑁)) → (𝐼(𝑊𝑋)𝐽) = (𝑉‘(𝐼𝑋𝐽)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1031   = wceq 1475   ∈ wcel 1977  Vcvv 3173  ‘cfv 5804  (class class class)co 6549   ↦ cmpt2 6551  Fincfn 7841  Basecbs 15695  0gc0g 15923  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  Ringcrg 18370   Mat cmat 20032 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-hom 15793  df-cco 15794  df-0g 15925  df-prds 15931  df-pws 15933  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-sra 18993  df-rgmod 18994  df-dsmm 19895  df-frlm 19910  df-mat 20033 This theorem is referenced by:  cpmatinvcl  20341
 Copyright terms: Public domain W3C validator