MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneleq Structured version   Visualization version   GIF version

Theorem lspsneleq 18936
Description: Membership relation that implies equality of spans. (spansneleq 27813 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsneleq.v 𝑉 = (Base‘𝑊)
lspsneleq.o 0 = (0g𝑊)
lspsneleq.n 𝑁 = (LSpan‘𝑊)
lspsneleq.w (𝜑𝑊 ∈ LVec)
lspsneleq.x (𝜑𝑋𝑉)
lspsneleq.y (𝜑𝑌 ∈ (𝑁‘{𝑋}))
lspsneleq.z (𝜑𝑌0 )
Assertion
Ref Expression
lspsneleq (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))

Proof of Theorem lspsneleq
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 lspsneleq.y . 2 (𝜑𝑌 ∈ (𝑁‘{𝑋}))
2 lspsneleq.w . . . . 5 (𝜑𝑊 ∈ LVec)
3 lveclmod 18927 . . . . 5 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
42, 3syl 17 . . . 4 (𝜑𝑊 ∈ LMod)
5 lspsneleq.x . . . 4 (𝜑𝑋𝑉)
6 eqid 2610 . . . . 5 (Scalar‘𝑊) = (Scalar‘𝑊)
7 eqid 2610 . . . . 5 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
8 lspsneleq.v . . . . 5 𝑉 = (Base‘𝑊)
9 eqid 2610 . . . . 5 ( ·𝑠𝑊) = ( ·𝑠𝑊)
10 lspsneleq.n . . . . 5 𝑁 = (LSpan‘𝑊)
116, 7, 8, 9, 10lspsnel 18824 . . . 4 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
124, 5, 11syl2anc 691 . . 3 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) ↔ ∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋)))
13 simpr 476 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
1413sneqd 4137 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → {𝑌} = {(𝑘( ·𝑠𝑊)𝑋)})
1514fveq2d 6107 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}))
162ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑊 ∈ LVec)
17 simplr 788 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ∈ (Base‘(Scalar‘𝑊)))
18 lspsneleq.z . . . . . . . . 9 (𝜑𝑌0 )
1918ad2antrr 758 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑌0 )
20 simplr 788 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = (𝑘( ·𝑠𝑊)𝑋))
21 simpr 476 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑘 = (0g‘(Scalar‘𝑊)))
2221oveq1d 6564 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → (𝑘( ·𝑠𝑊)𝑋) = ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋))
23 eqid 2610 . . . . . . . . . . . . . 14 (0g‘(Scalar‘𝑊)) = (0g‘(Scalar‘𝑊))
24 lspsneleq.o . . . . . . . . . . . . . 14 0 = (0g𝑊)
258, 6, 9, 23, 24lmod0vs 18719 . . . . . . . . . . . . 13 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
264, 5, 25syl2anc 691 . . . . . . . . . . . 12 (𝜑 → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2726ad3antrrr 762 . . . . . . . . . . 11 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → ((0g‘(Scalar‘𝑊))( ·𝑠𝑊)𝑋) = 0 )
2820, 22, 273eqtrd 2648 . . . . . . . . . 10 ((((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) ∧ 𝑘 = (0g‘(Scalar‘𝑊))) → 𝑌 = 0 )
2928ex 449 . . . . . . . . 9 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑘 = (0g‘(Scalar‘𝑊)) → 𝑌 = 0 ))
3029necon3d 2803 . . . . . . . 8 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑌0𝑘 ≠ (0g‘(Scalar‘𝑊))))
3119, 30mpd 15 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑘 ≠ (0g‘(Scalar‘𝑊)))
325ad2antrr 758 . . . . . . 7 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → 𝑋𝑉)
338, 6, 9, 7, 23, 10lspsnvs 18935 . . . . . . 7 ((𝑊 ∈ LVec ∧ (𝑘 ∈ (Base‘(Scalar‘𝑊)) ∧ 𝑘 ≠ (0g‘(Scalar‘𝑊))) ∧ 𝑋𝑉) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3416, 17, 31, 32, 33syl121anc 1323 . . . . . 6 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{(𝑘( ·𝑠𝑊)𝑋)}) = (𝑁‘{𝑋}))
3515, 34eqtrd 2644 . . . . 5 (((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) ∧ 𝑌 = (𝑘( ·𝑠𝑊)𝑋)) → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
3635ex 449 . . . 4 ((𝜑𝑘 ∈ (Base‘(Scalar‘𝑊))) → (𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3736rexlimdva 3013 . . 3 (𝜑 → (∃𝑘 ∈ (Base‘(Scalar‘𝑊))𝑌 = (𝑘( ·𝑠𝑊)𝑋) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
3812, 37sylbid 229 . 2 (𝜑 → (𝑌 ∈ (𝑁‘{𝑋}) → (𝑁‘{𝑌}) = (𝑁‘{𝑋})))
391, 38mpd 15 1 (𝜑 → (𝑁‘{𝑌}) = (𝑁‘{𝑋}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wrex 2897  {csn 4125  cfv 5804  (class class class)co 6549  Basecbs 15695  Scalarcsca 15771   ·𝑠 cvsca 15772  0gc0g 15923  LModclmod 18686  LSpanclspn 18792  LVecclvec 18923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-lmod 18688  df-lss 18754  df-lsp 18793  df-lvec 18924
This theorem is referenced by:  lspsncmp  18937  lspsnel4  18945  lspdisj2  18948  lspexch  18950  lsmcv  18962  mapdpglem10  35988  mapdpglem15  35993
  Copyright terms: Public domain W3C validator