MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneleq Structured version   Unicode version

Theorem lspsneleq 17635
Description: Membership relation that implies equality of spans. (spansneleq 26360 analog.) (Contributed by NM, 4-Jul-2014.)
Hypotheses
Ref Expression
lspsneleq.v  |-  V  =  ( Base `  W
)
lspsneleq.o  |-  .0.  =  ( 0g `  W )
lspsneleq.n  |-  N  =  ( LSpan `  W )
lspsneleq.w  |-  ( ph  ->  W  e.  LVec )
lspsneleq.x  |-  ( ph  ->  X  e.  V )
lspsneleq.y  |-  ( ph  ->  Y  e.  ( N `
 { X }
) )
lspsneleq.z  |-  ( ph  ->  Y  =/=  .0.  )
Assertion
Ref Expression
lspsneleq  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { X } ) )

Proof of Theorem lspsneleq
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 lspsneleq.y . 2  |-  ( ph  ->  Y  e.  ( N `
 { X }
) )
2 lspsneleq.w . . . . 5  |-  ( ph  ->  W  e.  LVec )
3 lveclmod 17626 . . . . 5  |-  ( W  e.  LVec  ->  W  e. 
LMod )
42, 3syl 16 . . . 4  |-  ( ph  ->  W  e.  LMod )
5 lspsneleq.x . . . 4  |-  ( ph  ->  X  e.  V )
6 eqid 2443 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
7 eqid 2443 . . . . 5  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
8 lspsneleq.v . . . . 5  |-  V  =  ( Base `  W
)
9 eqid 2443 . . . . 5  |-  ( .s
`  W )  =  ( .s `  W
)
10 lspsneleq.n . . . . 5  |-  N  =  ( LSpan `  W )
116, 7, 8, 9, 10lspsnel 17523 . . . 4  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( Y  e.  ( N `  { X } )  <->  E. k  e.  ( Base `  (Scalar `  W
) ) Y  =  ( k ( .s
`  W ) X ) ) )
124, 5, 11syl2anc 661 . . 3  |-  ( ph  ->  ( Y  e.  ( N `  { X } )  <->  E. k  e.  ( Base `  (Scalar `  W ) ) Y  =  ( k ( .s `  W ) X ) ) )
13 simpr 461 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  Y  =  ( k ( .s
`  W ) X ) )
1413sneqd 4026 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  { Y }  =  { (
k ( .s `  W ) X ) } )
1514fveq2d 5860 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  ( N `  { Y } )  =  ( N `  { ( k ( .s `  W ) X ) } ) )
162ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  W  e.  LVec )
17 simplr 755 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  k  e.  ( Base `  (Scalar `  W
) ) )
18 lspsneleq.z . . . . . . . . 9  |-  ( ph  ->  Y  =/=  .0.  )
1918ad2antrr 725 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  Y  =/=  .0.  )
20 simplr 755 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  Y  =  ( k ( .s `  W ) X ) )  /\  k  =  ( 0g `  (Scalar `  W )
) )  ->  Y  =  ( k ( .s `  W ) X ) )
21 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  Y  =  ( k ( .s `  W ) X ) )  /\  k  =  ( 0g `  (Scalar `  W )
) )  ->  k  =  ( 0g `  (Scalar `  W ) ) )
2221oveq1d 6296 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  Y  =  ( k ( .s `  W ) X ) )  /\  k  =  ( 0g `  (Scalar `  W )
) )  ->  (
k ( .s `  W ) X )  =  ( ( 0g
`  (Scalar `  W )
) ( .s `  W ) X ) )
23 eqid 2443 . . . . . . . . . . . . . 14  |-  ( 0g
`  (Scalar `  W )
)  =  ( 0g
`  (Scalar `  W )
)
24 lspsneleq.o . . . . . . . . . . . . . 14  |-  .0.  =  ( 0g `  W )
258, 6, 9, 23, 24lmod0vs 17419 . . . . . . . . . . . . 13  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) X )  =  .0.  )
264, 5, 25syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( 0g `  (Scalar `  W ) ) ( .s `  W
) X )  =  .0.  )
2726ad3antrrr 729 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  Y  =  ( k ( .s `  W ) X ) )  /\  k  =  ( 0g `  (Scalar `  W )
) )  ->  (
( 0g `  (Scalar `  W ) ) ( .s `  W ) X )  =  .0.  )
2820, 22, 273eqtrd 2488 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W )
) )  /\  Y  =  ( k ( .s `  W ) X ) )  /\  k  =  ( 0g `  (Scalar `  W )
) )  ->  Y  =  .0.  )
2928ex 434 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  ( k  =  ( 0g `  (Scalar `  W ) )  ->  Y  =  .0.  ) )
3029necon3d 2667 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  ( Y  =/=  .0.  ->  k  =/=  ( 0g `  (Scalar `  W ) ) ) )
3119, 30mpd 15 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  k  =/=  ( 0g `  (Scalar `  W ) ) )
325ad2antrr 725 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  X  e.  V )
338, 6, 9, 7, 23, 10lspsnvs 17634 . . . . . . 7  |-  ( ( W  e.  LVec  /\  (
k  e.  ( Base `  (Scalar `  W )
)  /\  k  =/=  ( 0g `  (Scalar `  W ) ) )  /\  X  e.  V
)  ->  ( N `  { ( k ( .s `  W ) X ) } )  =  ( N `  { X } ) )
3416, 17, 31, 32, 33syl121anc 1234 . . . . . 6  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  ( N `  { ( k ( .s `  W ) X ) } )  =  ( N `  { X } ) )
3515, 34eqtrd 2484 . . . . 5  |-  ( ( ( ph  /\  k  e.  ( Base `  (Scalar `  W ) ) )  /\  Y  =  ( k ( .s `  W ) X ) )  ->  ( N `  { Y } )  =  ( N `  { X } ) )
3635ex 434 . . . 4  |-  ( (
ph  /\  k  e.  ( Base `  (Scalar `  W
) ) )  -> 
( Y  =  ( k ( .s `  W ) X )  ->  ( N `  { Y } )  =  ( N `  { X } ) ) )
3736rexlimdva 2935 . . 3  |-  ( ph  ->  ( E. k  e.  ( Base `  (Scalar `  W ) ) Y  =  ( k ( .s `  W ) X )  ->  ( N `  { Y } )  =  ( N `  { X } ) ) )
3812, 37sylbid 215 . 2  |-  ( ph  ->  ( Y  e.  ( N `  { X } )  ->  ( N `  { Y } )  =  ( N `  { X } ) ) )
391, 38mpd 15 1  |-  ( ph  ->  ( N `  { Y } )  =  ( N `  { X } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1383    e. wcel 1804    =/= wne 2638   E.wrex 2794   {csn 4014   ` cfv 5578  (class class class)co 6281   Basecbs 14509  Scalarcsca 14577   .scvsca 14578   0gc0g 14714   LModclmod 17386   LSpanclspn 17491   LVecclvec 17622
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577  ax-cnex 9551  ax-resscn 9552  ax-1cn 9553  ax-icn 9554  ax-addcl 9555  ax-addrcl 9556  ax-mulcl 9557  ax-mulrcl 9558  ax-mulcom 9559  ax-addass 9560  ax-mulass 9561  ax-distr 9562  ax-i2m1 9563  ax-1ne0 9564  ax-1rid 9565  ax-rnegex 9566  ax-rrecex 9567  ax-cnre 9568  ax-pre-lttri 9569  ax-pre-lttrn 9570  ax-pre-ltadd 9571  ax-pre-mulgt0 9572
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 975  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-nel 2641  df-ral 2798  df-rex 2799  df-reu 2800  df-rmo 2801  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-tp 4019  df-op 4021  df-uni 4235  df-int 4272  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-tr 4531  df-eprel 4781  df-id 4785  df-po 4790  df-so 4791  df-fr 4828  df-we 4830  df-ord 4871  df-on 4872  df-lim 4873  df-suc 4874  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-om 6686  df-1st 6785  df-2nd 6786  df-tpos 6957  df-recs 7044  df-rdg 7078  df-er 7313  df-en 7519  df-dom 7520  df-sdom 7521  df-pnf 9633  df-mnf 9634  df-xr 9635  df-ltxr 9636  df-le 9637  df-sub 9812  df-neg 9813  df-nn 10543  df-2 10600  df-3 10601  df-ndx 14512  df-slot 14513  df-base 14514  df-sets 14515  df-ress 14516  df-plusg 14587  df-mulr 14588  df-0g 14716  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15931  df-minusg 15932  df-sbg 15933  df-mgp 17016  df-ur 17028  df-ring 17074  df-oppr 17146  df-dvdsr 17164  df-unit 17165  df-invr 17195  df-drng 17272  df-lmod 17388  df-lss 17453  df-lsp 17492  df-lvec 17623
This theorem is referenced by:  lspsncmp  17636  lspsnel4  17644  lspdisj2  17647  lspexch  17649  lsmcv  17661  mapdpglem10  37142  mapdpglem15  37147
  Copyright terms: Public domain W3C validator