Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnr2i Structured version   Visualization version   GIF version

Theorem lnr2i 36705
 Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
lnr2i.u 𝑈 = (LIdeal‘𝑅)
lnr2i.n 𝑁 = (RSpan‘𝑅)
Assertion
Ref Expression
lnr2i ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔))
Distinct variable groups:   𝑔,𝐼   𝑔,𝑁   𝑅,𝑔   𝑈,𝑔

Proof of Theorem lnr2i
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 eqid 2610 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
2 lnr2i.u . . . . . 6 𝑈 = (LIdeal‘𝑅)
3 lnr2i.n . . . . . 6 𝑁 = (RSpan‘𝑅)
41, 2, 3islnr2 36703 . . . . 5 (𝑅 ∈ LNoeR ↔ (𝑅 ∈ Ring ∧ ∀𝑖𝑈𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔)))
54simprbi 479 . . . 4 (𝑅 ∈ LNoeR → ∀𝑖𝑈𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔))
6 eqeq1 2614 . . . . . 6 (𝑖 = 𝐼 → (𝑖 = (𝑁𝑔) ↔ 𝐼 = (𝑁𝑔)))
76rexbidv 3034 . . . . 5 (𝑖 = 𝐼 → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔) ↔ ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔)))
87rspcva 3280 . . . 4 ((𝐼𝑈 ∧ ∀𝑖𝑈𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝑖 = (𝑁𝑔)) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔))
95, 8sylan2 490 . . 3 ((𝐼𝑈𝑅 ∈ LNoeR) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔))
109ancoms 468 . 2 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → ∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔))
11 lnrring 36701 . . . . . . . . . . . 12 (𝑅 ∈ LNoeR → 𝑅 ∈ Ring)
123, 1rspssid 19044 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁𝑔))
1311, 12sylan 487 . . . . . . . . . . 11 ((𝑅 ∈ LNoeR ∧ 𝑔 ⊆ (Base‘𝑅)) → 𝑔 ⊆ (𝑁𝑔))
1413ex 449 . . . . . . . . . 10 (𝑅 ∈ LNoeR → (𝑔 ⊆ (Base‘𝑅) → 𝑔 ⊆ (𝑁𝑔)))
15 vex 3176 . . . . . . . . . . 11 𝑔 ∈ V
1615elpw 4114 . . . . . . . . . 10 (𝑔 ∈ 𝒫 (Base‘𝑅) ↔ 𝑔 ⊆ (Base‘𝑅))
1715elpw 4114 . . . . . . . . . 10 (𝑔 ∈ 𝒫 (𝑁𝑔) ↔ 𝑔 ⊆ (𝑁𝑔))
1814, 16, 173imtr4g 284 . . . . . . . . 9 (𝑅 ∈ LNoeR → (𝑔 ∈ 𝒫 (Base‘𝑅) → 𝑔 ∈ 𝒫 (𝑁𝑔)))
1918anim1d 586 . . . . . . . 8 (𝑅 ∈ LNoeR → ((𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin) → (𝑔 ∈ 𝒫 (𝑁𝑔) ∧ 𝑔 ∈ Fin)))
20 elin 3758 . . . . . . . 8 (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (Base‘𝑅) ∧ 𝑔 ∈ Fin))
21 elin 3758 . . . . . . . 8 (𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin) ↔ (𝑔 ∈ 𝒫 (𝑁𝑔) ∧ 𝑔 ∈ Fin))
2219, 20, 213imtr4g 284 . . . . . . 7 (𝑅 ∈ LNoeR → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin)))
23 pweq 4111 . . . . . . . . . 10 (𝐼 = (𝑁𝑔) → 𝒫 𝐼 = 𝒫 (𝑁𝑔))
2423ineq1d 3775 . . . . . . . . 9 (𝐼 = (𝑁𝑔) → (𝒫 𝐼 ∩ Fin) = (𝒫 (𝑁𝑔) ∩ Fin))
2524eleq2d 2673 . . . . . . . 8 (𝐼 = (𝑁𝑔) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ↔ 𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin)))
2625imbi2d 329 . . . . . . 7 (𝐼 = (𝑁𝑔) → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin)) ↔ (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 (𝑁𝑔) ∩ Fin))))
2722, 26syl5ibrcom 236 . . . . . 6 (𝑅 ∈ LNoeR → (𝐼 = (𝑁𝑔) → (𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) → 𝑔 ∈ (𝒫 𝐼 ∩ Fin))))
2827imdistand 724 . . . . 5 (𝑅 ∈ LNoeR → ((𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)) → (𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin))))
29 ancom 465 . . . . 5 ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁𝑔)) ↔ (𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)))
30 ancom 465 . . . . 5 ((𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁𝑔)) ↔ (𝐼 = (𝑁𝑔) ∧ 𝑔 ∈ (𝒫 𝐼 ∩ Fin)))
3128, 29, 303imtr4g 284 . . . 4 (𝑅 ∈ LNoeR → ((𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin) ∧ 𝐼 = (𝑁𝑔)) → (𝑔 ∈ (𝒫 𝐼 ∩ Fin) ∧ 𝐼 = (𝑁𝑔))))
3231reximdv2 2997 . . 3 (𝑅 ∈ LNoeR → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔)))
3332adantr 480 . 2 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → (∃𝑔 ∈ (𝒫 (Base‘𝑅) ∩ Fin)𝐼 = (𝑁𝑔) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔)))
3410, 33mpd 15 1 ((𝑅 ∈ LNoeR ∧ 𝐼𝑈) → ∃𝑔 ∈ (𝒫 𝐼 ∩ Fin)𝐼 = (𝑁𝑔))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977  ∀wral 2896  ∃wrex 2897   ∩ cin 3539   ⊆ wss 3540  𝒫 cpw 4108  ‘cfv 5804  Fincfn 7841  Basecbs 15695  Ringcrg 18370  LIdealclidl 18991  RSpancrsp 18992  LNoeRclnr 36698 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-ip 15786  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-subg 17414  df-mgp 18313  df-ur 18325  df-ring 18372  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lsp 18793  df-sra 18993  df-rgmod 18994  df-lidl 18995  df-rsp 18996  df-lfig 36656  df-lnm 36664  df-lnr 36699 This theorem is referenced by:  hbtlem6  36718
 Copyright terms: Public domain W3C validator