Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lnr2i Structured version   Unicode version

Theorem lnr2i 29317
Description: Given an ideal in a left-Noetherian ring, there is a finite subset which generates it. (Contributed by Stefan O'Rear, 31-Mar-2015.)
Hypotheses
Ref Expression
lnr2i.u  |-  U  =  (LIdeal `  R )
lnr2i.n  |-  N  =  (RSpan `  R )
Assertion
Ref Expression
lnr2i  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  E. g  e.  ( ~P I  i^i 
Fin ) I  =  ( N `  g
) )
Distinct variable groups:    g, I    g, N    R, g    U, g

Proof of Theorem lnr2i
Dummy variable  i is distinct from all other variables.
StepHypRef Expression
1 eqid 2433 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
2 lnr2i.u . . . . . 6  |-  U  =  (LIdeal `  R )
3 lnr2i.n . . . . . 6  |-  N  =  (RSpan `  R )
41, 2, 3islnr2 29315 . . . . 5  |-  ( R  e. LNoeR 
<->  ( R  e.  Ring  /\ 
A. i  e.  U  E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
i  =  ( N `
 g ) ) )
54simprbi 461 . . . 4  |-  ( R  e. LNoeR  ->  A. i  e.  U  E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
i  =  ( N `
 g ) )
6 eqeq1 2439 . . . . . 6  |-  ( i  =  I  ->  (
i  =  ( N `
 g )  <->  I  =  ( N `  g ) ) )
76rexbidv 2726 . . . . 5  |-  ( i  =  I  ->  ( E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
i  =  ( N `
 g )  <->  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )
) )
87rspcva 3060 . . . 4  |-  ( ( I  e.  U  /\  A. i  e.  U  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) i  =  ( N `  g
) )  ->  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )
)
95, 8sylan2 471 . . 3  |-  ( ( I  e.  U  /\  R  e. LNoeR )  ->  E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
I  =  ( N `
 g ) )
109ancoms 450 . 2  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )
)
11 lnrrng 29313 . . . . . . . . . . . 12  |-  ( R  e. LNoeR  ->  R  e.  Ring )
123, 1rspssid 17227 . . . . . . . . . . . 12  |-  ( ( R  e.  Ring  /\  g  C_  ( Base `  R
) )  ->  g  C_  ( N `  g
) )
1311, 12sylan 468 . . . . . . . . . . 11  |-  ( ( R  e. LNoeR  /\  g  C_  ( Base `  R
) )  ->  g  C_  ( N `  g
) )
1413ex 434 . . . . . . . . . 10  |-  ( R  e. LNoeR  ->  ( g  C_  ( Base `  R )  ->  g  C_  ( N `  g ) ) )
15 vex 2965 . . . . . . . . . . 11  |-  g  e. 
_V
1615elpw 3854 . . . . . . . . . 10  |-  ( g  e.  ~P ( Base `  R )  <->  g  C_  ( Base `  R )
)
1715elpw 3854 . . . . . . . . . 10  |-  ( g  e.  ~P ( N `
 g )  <->  g  C_  ( N `  g ) )
1814, 16, 173imtr4g 270 . . . . . . . . 9  |-  ( R  e. LNoeR  ->  ( g  e. 
~P ( Base `  R
)  ->  g  e.  ~P ( N `  g
) ) )
1918anim1d 559 . . . . . . . 8  |-  ( R  e. LNoeR  ->  ( ( g  e.  ~P ( Base `  R )  /\  g  e.  Fin )  ->  (
g  e.  ~P ( N `  g )  /\  g  e.  Fin ) ) )
20 elin 3527 . . . . . . . 8  |-  ( g  e.  ( ~P ( Base `  R )  i^i 
Fin )  <->  ( g  e.  ~P ( Base `  R
)  /\  g  e.  Fin ) )
21 elin 3527 . . . . . . . 8  |-  ( g  e.  ( ~P ( N `  g )  i^i  Fin )  <->  ( g  e.  ~P ( N `  g )  /\  g  e.  Fin ) )
2219, 20, 213imtr4g 270 . . . . . . 7  |-  ( R  e. LNoeR  ->  ( g  e.  ( ~P ( Base `  R )  i^i  Fin )  ->  g  e.  ( ~P ( N `  g )  i^i  Fin ) ) )
23 pweq 3851 . . . . . . . . . 10  |-  ( I  =  ( N `  g )  ->  ~P I  =  ~P ( N `  g )
)
2423ineq1d 3539 . . . . . . . . 9  |-  ( I  =  ( N `  g )  ->  ( ~P I  i^i  Fin )  =  ( ~P ( N `  g )  i^i  Fin ) )
2524eleq2d 2500 . . . . . . . 8  |-  ( I  =  ( N `  g )  ->  (
g  e.  ( ~P I  i^i  Fin )  <->  g  e.  ( ~P ( N `  g )  i^i  Fin ) ) )
2625imbi2d 316 . . . . . . 7  |-  ( I  =  ( N `  g )  ->  (
( g  e.  ( ~P ( Base `  R
)  i^i  Fin )  ->  g  e.  ( ~P I  i^i  Fin )
)  <->  ( g  e.  ( ~P ( Base `  R )  i^i  Fin )  ->  g  e.  ( ~P ( N `  g )  i^i  Fin ) ) ) )
2722, 26syl5ibrcom 222 . . . . . 6  |-  ( R  e. LNoeR  ->  ( I  =  ( N `  g
)  ->  ( g  e.  ( ~P ( Base `  R )  i^i  Fin )  ->  g  e.  ( ~P I  i^i  Fin ) ) ) )
2827imdistand 685 . . . . 5  |-  ( R  e. LNoeR  ->  ( ( I  =  ( N `  g )  /\  g  e.  ( ~P ( Base `  R )  i^i  Fin ) )  ->  (
I  =  ( N `
 g )  /\  g  e.  ( ~P I  i^i  Fin ) ) ) )
29 ancom 448 . . . . 5  |-  ( ( g  e.  ( ~P ( Base `  R
)  i^i  Fin )  /\  I  =  ( N `  g )
)  <->  ( I  =  ( N `  g
)  /\  g  e.  ( ~P ( Base `  R
)  i^i  Fin )
) )
30 ancom 448 . . . . 5  |-  ( ( g  e.  ( ~P I  i^i  Fin )  /\  I  =  ( N `  g )
)  <->  ( I  =  ( N `  g
)  /\  g  e.  ( ~P I  i^i  Fin ) ) )
3128, 29, 303imtr4g 270 . . . 4  |-  ( R  e. LNoeR  ->  ( ( g  e.  ( ~P ( Base `  R )  i^i 
Fin )  /\  I  =  ( N `  g ) )  -> 
( g  e.  ( ~P I  i^i  Fin )  /\  I  =  ( N `  g ) ) ) )
3231reximdv2 2815 . . 3  |-  ( R  e. LNoeR  ->  ( E. g  e.  ( ~P ( Base `  R )  i^i  Fin ) I  =  ( N `  g )  ->  E. g  e.  ( ~P I  i^i  Fin ) I  =  ( N `  g )
) )
3332adantr 462 . 2  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  ( E. g  e.  ( ~P ( Base `  R
)  i^i  Fin )
I  =  ( N `
 g )  ->  E. g  e.  ( ~P I  i^i  Fin )
I  =  ( N `
 g ) ) )
3410, 33mpd 15 1  |-  ( ( R  e. LNoeR  /\  I  e.  U )  ->  E. g  e.  ( ~P I  i^i 
Fin ) I  =  ( N `  g
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   A.wral 2705   E.wrex 2706    i^i cin 3315    C_ wss 3316   ~Pcpw 3848   ` cfv 5406   Fincfn 7298   Basecbs 14157   Ringcrg 16577  LIdealclidl 17173  RSpancrsp 17174  LNoeRclnr 29310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-ip 14239  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-sbg 15527  df-subg 15658  df-mgp 16566  df-rng 16580  df-ur 16582  df-subrg 16787  df-lmod 16874  df-lss 16936  df-lsp 16975  df-sra 17175  df-rgmod 17176  df-lidl 17177  df-rsp 17178  df-lfig 29266  df-lnm 29274  df-lnr 29311
This theorem is referenced by:  hbtlem6  29330
  Copyright terms: Public domain W3C validator