Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-lnr Structured version   Visualization version   GIF version

Definition df-lnr 36699
Description: A ring is left-Noetherian iff it is Noetherian as a left module over itself. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
df-lnr LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}

Detailed syntax breakdown of Definition df-lnr
StepHypRef Expression
1 clnr 36698 . 2 class LNoeR
2 va . . . . . 6 setvar 𝑎
32cv 1474 . . . . 5 class 𝑎
4 crglmod 18990 . . . . 5 class ringLMod
53, 4cfv 5804 . . . 4 class (ringLMod‘𝑎)
6 clnm 36663 . . . 4 class LNoeM
75, 6wcel 1977 . . 3 wff (ringLMod‘𝑎) ∈ LNoeM
8 crg 18370 . . 3 class Ring
97, 2, 8crab 2900 . 2 class {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
101, 9wceq 1475 1 wff LNoeR = {𝑎 ∈ Ring ∣ (ringLMod‘𝑎) ∈ LNoeM}
Colors of variables: wff setvar class
This definition is referenced by:  islnr  36700
  Copyright terms: Public domain W3C validator