Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lmod1lem5 | Structured version Visualization version GIF version |
Description: Lemma 5 for lmod1 42075. (Contributed by AV, 28-Apr-2019.) |
Ref | Expression |
---|---|
lmod1.m | ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) |
Ref | Expression |
---|---|
lmod1lem5 | ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6113 | . . . . . 6 ⊢ (Base‘𝑅) ∈ V | |
2 | snex 4835 | . . . . . 6 ⊢ {𝐼} ∈ V | |
3 | 1, 2 | pm3.2i 470 | . . . . 5 ⊢ ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) |
4 | 3 | a1i 11 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V)) |
5 | mpt2exga 7135 | . . . 4 ⊢ (((Base‘𝑅) ∈ V ∧ {𝐼} ∈ V) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V) | |
6 | lmod1.m | . . . . 5 ⊢ 𝑀 = ({〈(Base‘ndx), {𝐼}〉, 〈(+g‘ndx), {〈〈𝐼, 𝐼〉, 𝐼〉}〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)〉}) | |
7 | 6 | lmodvsca 15844 | . . . 4 ⊢ ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) ∈ V → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠 ‘𝑀)) |
8 | 4, 5, 7 | 3syl 18 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦) = ( ·𝑠 ‘𝑀)) |
9 | 8 | eqcomd 2616 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ( ·𝑠 ‘𝑀) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)) |
10 | simprr 792 | . 2 ⊢ (((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) ∧ (𝑥 = (1r‘(Scalar‘𝑀)) ∧ 𝑦 = 𝐼)) → 𝑦 = 𝐼) | |
11 | 6 | lmodsca 15843 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀)) |
12 | 11 | adantl 481 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑀)) |
13 | 12 | eqcomd 2616 | . . . 4 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅) |
14 | 13 | fveq2d 6107 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘(Scalar‘𝑀)) = (1r‘𝑅)) |
15 | eqid 2610 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | eqid 2610 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
17 | 15, 16 | ringidcl 18391 | . . . 4 ⊢ (𝑅 ∈ Ring → (1r‘𝑅) ∈ (Base‘𝑅)) |
18 | 17 | adantl 481 | . . 3 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘𝑅) ∈ (Base‘𝑅)) |
19 | 14, 18 | eqeltrd 2688 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → (1r‘(Scalar‘𝑀)) ∈ (Base‘𝑅)) |
20 | snidg 4153 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ {𝐼}) | |
21 | 20 | adantr 480 | . 2 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → 𝐼 ∈ {𝐼}) |
22 | 9, 10, 19, 21, 21 | ovmpt2d 6686 | 1 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠 ‘𝑀)𝐼) = 𝐼) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 Vcvv 3173 ∪ cun 3538 {csn 4125 {ctp 4129 〈cop 4131 ‘cfv 5804 (class class class)co 6549 ↦ cmpt2 6551 ndxcnx 15692 Basecbs 15695 +gcplusg 15768 Scalarcsca 15771 ·𝑠 cvsca 15772 1rcur 18324 Ringcrg 18370 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 ax-cnex 9871 ax-resscn 9872 ax-1cn 9873 ax-icn 9874 ax-addcl 9875 ax-addrcl 9876 ax-mulcl 9877 ax-mulrcl 9878 ax-mulcom 9879 ax-addass 9880 ax-mulass 9881 ax-distr 9882 ax-i2m1 9883 ax-1ne0 9884 ax-1rid 9885 ax-rnegex 9886 ax-rrecex 9887 ax-cnre 9888 ax-pre-lttri 9889 ax-pre-lttrn 9890 ax-pre-ltadd 9891 ax-pre-mulgt0 9892 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-nel 2783 df-ral 2901 df-rex 2902 df-reu 2903 df-rmo 2904 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-int 4411 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-pred 5597 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-riota 6511 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-1st 7059 df-2nd 7060 df-wrecs 7294 df-recs 7355 df-rdg 7393 df-1o 7447 df-oadd 7451 df-er 7629 df-en 7842 df-dom 7843 df-sdom 7844 df-fin 7845 df-pnf 9955 df-mnf 9956 df-xr 9957 df-ltxr 9958 df-le 9959 df-sub 10147 df-neg 10148 df-nn 10898 df-2 10956 df-3 10957 df-4 10958 df-5 10959 df-6 10960 df-n0 11170 df-z 11255 df-uz 11564 df-fz 12198 df-struct 15697 df-ndx 15698 df-slot 15699 df-base 15700 df-sets 15701 df-plusg 15781 df-sca 15784 df-vsca 15785 df-0g 15925 df-mgm 17065 df-sgrp 17107 df-mnd 17118 df-mgp 18313 df-ur 18325 df-ring 18372 |
This theorem is referenced by: lmod1 42075 |
Copyright terms: Public domain | W3C validator |