Step | Hyp | Ref
| Expression |
1 | | limcrcl 23444 |
. . . . 5
⊢ (𝑥 ∈ (𝐹 limℂ 𝐶) → (𝐹:dom 𝐹⟶ℂ ∧ dom 𝐹 ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
2 | 1 | simp3d 1068 |
. . . 4
⊢ (𝑥 ∈ (𝐹 limℂ 𝐶) → 𝐶 ∈ ℂ) |
3 | 2 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐶) → 𝐶 ∈ ℂ)) |
4 | | inss1 3795 |
. . . . . 6
⊢ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) ⊆ ((𝐹 ↾ 𝐴) limℂ 𝐶) |
5 | 4 | sseli 3564 |
. . . . 5
⊢ (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶)) |
6 | | limcrcl 23444 |
. . . . . 6
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) → ((𝐹 ↾ 𝐴):dom (𝐹 ↾ 𝐴)⟶ℂ ∧ dom (𝐹 ↾ 𝐴) ⊆ ℂ ∧ 𝐶 ∈ ℂ)) |
7 | 6 | simp3d 1068 |
. . . . 5
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) → 𝐶 ∈ ℂ) |
8 | 5, 7 | syl 17 |
. . . 4
⊢ (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝐶 ∈ ℂ) |
9 | 8 | a1i 11 |
. . 3
⊢ (𝜑 → (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝐶 ∈ ℂ)) |
10 | | prfi 8120 |
. . . . . . . 8
⊢ {𝐴, 𝐵} ∈ Fin |
11 | 10 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → {𝐴, 𝐵} ∈ Fin) |
12 | | limcun.1 |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ⊆ ℂ) |
13 | 12 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐴 ⊆ ℂ) |
14 | | limcun.2 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ⊆ ℂ) |
15 | 14 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐵 ⊆ ℂ) |
16 | | cnex 9896 |
. . . . . . . . . . 11
⊢ ℂ
∈ V |
17 | 16 | ssex 4730 |
. . . . . . . . . 10
⊢ (𝐴 ⊆ ℂ → 𝐴 ∈ V) |
18 | 13, 17 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐴 ∈ V) |
19 | 16 | ssex 4730 |
. . . . . . . . . 10
⊢ (𝐵 ⊆ ℂ → 𝐵 ∈ V) |
20 | 15, 19 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐵 ∈ V) |
21 | | sseq1 3589 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝑦 ⊆ ℂ ↔ 𝐴 ⊆ ℂ)) |
22 | | sseq1 3589 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑦 ⊆ ℂ ↔ 𝐵 ⊆ ℂ)) |
23 | 21, 22 | ralprg 4181 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ))) |
24 | 18, 20, 23 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ ↔ (𝐴 ⊆ ℂ ∧ 𝐵 ⊆ ℂ))) |
25 | 13, 15, 24 | mpbir2and 959 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ∀𝑦 ∈ {𝐴, 𝐵}𝑦 ⊆ ℂ) |
26 | | limcun.3 |
. . . . . . . . 9
⊢ (𝜑 → 𝐹:(𝐴 ∪ 𝐵)⟶ℂ) |
27 | 26 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐹:(𝐴 ∪ 𝐵)⟶ℂ) |
28 | | uniiun 4509 |
. . . . . . . . . 10
⊢ ∪ {𝐴,
𝐵} = ∪ 𝑦 ∈ {𝐴, 𝐵}𝑦 |
29 | | uniprg 4386 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
30 | 18, 20, 29 | syl2anc 691 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ∪ {𝐴,
𝐵} = (𝐴 ∪ 𝐵)) |
31 | 28, 30 | syl5eqr 2658 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ∪ 𝑦 ∈ {𝐴, 𝐵}𝑦 = (𝐴 ∪ 𝐵)) |
32 | 31 | feq2d 5944 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝐹:∪ 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ ↔ 𝐹:(𝐴 ∪ 𝐵)⟶ℂ)) |
33 | 27, 32 | mpbird 246 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐹:∪ 𝑦 ∈ {𝐴, 𝐵}𝑦⟶ℂ) |
34 | | simpr 476 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → 𝐶 ∈ ℂ) |
35 | 11, 25, 33, 34 | limciun 23464 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝐹 limℂ 𝐶) = (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶))) |
36 | 35 | eleq2d 2673 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶)))) |
37 | | reseq2 5312 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐴 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝐴)) |
38 | 37 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐴 → ((𝐹 ↾ 𝑦) limℂ 𝐶) = ((𝐹 ↾ 𝐴) limℂ 𝐶)) |
39 | 38 | eleq2d 2673 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐴 → (𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ 𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶))) |
40 | | reseq2 5312 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝐵 → (𝐹 ↾ 𝑦) = (𝐹 ↾ 𝐵)) |
41 | 40 | oveq1d 6564 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝐵 → ((𝐹 ↾ 𝑦) limℂ 𝐶) = ((𝐹 ↾ 𝐵) limℂ 𝐶)) |
42 | 41 | eleq2d 2673 |
. . . . . . . . . 10
⊢ (𝑦 = 𝐵 → (𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶))) |
43 | 39, 42 | ralprg 4181 |
. . . . . . . . 9
⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
44 | 18, 20, 43 | syl2anc 691 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
45 | 44 | anbi2d 736 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶))))) |
46 | | limccl 23445 |
. . . . . . . . . 10
⊢ ((𝐹 ↾ 𝐴) limℂ 𝐶) ⊆ ℂ |
47 | 46 | sseli 3564 |
. . . . . . . . 9
⊢ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) → 𝑥 ∈ ℂ) |
48 | 47 | adantr 480 |
. . . . . . . 8
⊢ ((𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)) → 𝑥 ∈ ℂ) |
49 | 48 | pm4.71ri 663 |
. . . . . . 7
⊢ ((𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
50 | 45, 49 | syl6bbr 277 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → ((𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
51 | | elriin 4529 |
. . . . . 6
⊢ (𝑥 ∈ (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ (𝑥 ∈ ℂ ∧ ∀𝑦 ∈ {𝐴, 𝐵}𝑥 ∈ ((𝐹 ↾ 𝑦) limℂ 𝐶))) |
52 | | elin 3758 |
. . . . . 6
⊢ (𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)) ↔ (𝑥 ∈ ((𝐹 ↾ 𝐴) limℂ 𝐶) ∧ 𝑥 ∈ ((𝐹 ↾ 𝐵) limℂ 𝐶))) |
53 | 50, 51, 52 | 3bitr4g 302 |
. . . . 5
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ (ℂ ∩ ∩ 𝑦 ∈ {𝐴, 𝐵} ((𝐹 ↾ 𝑦) limℂ 𝐶)) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
54 | 36, 53 | bitrd 267 |
. . . 4
⊢ ((𝜑 ∧ 𝐶 ∈ ℂ) → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
55 | 54 | ex 449 |
. . 3
⊢ (𝜑 → (𝐶 ∈ ℂ → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶))))) |
56 | 3, 9, 55 | pm5.21ndd 368 |
. 2
⊢ (𝜑 → (𝑥 ∈ (𝐹 limℂ 𝐶) ↔ 𝑥 ∈ (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶)))) |
57 | 56 | eqrdv 2608 |
1
⊢ (𝜑 → (𝐹 limℂ 𝐶) = (((𝐹 ↾ 𝐴) limℂ 𝐶) ∩ ((𝐹 ↾ 𝐵) limℂ 𝐶))) |