Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsub Structured version   Visualization version   GIF version

Theorem ldualvsub 33460
Description: The value of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsub.r 𝑅 = (Scalar‘𝑊)
ldualvsub.n 𝑁 = (invg𝑅)
ldualvsub.u 1 = (1r𝑅)
ldualvsub.f 𝐹 = (LFnl‘𝑊)
ldualvsub.d 𝐷 = (LDual‘𝑊)
ldualvsub.p + = (+g𝐷)
ldualvsub.t · = ( ·𝑠𝐷)
ldualvsub.m = (-g𝐷)
ldualvsub.w (𝜑𝑊 ∈ LMod)
ldualvsub.g (𝜑𝐺𝐹)
ldualvsub.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsub (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))

Proof of Theorem ldualvsub
StepHypRef Expression
1 ldualvsub.d . . . 4 𝐷 = (LDual‘𝑊)
2 ldualvsub.w . . . 4 (𝜑𝑊 ∈ LMod)
31, 2lduallmod 33458 . . 3 (𝜑𝐷 ∈ LMod)
4 ldualvsub.f . . . 4 𝐹 = (LFnl‘𝑊)
5 eqid 2610 . . . 4 (Base‘𝐷) = (Base‘𝐷)
6 ldualvsub.g . . . 4 (𝜑𝐺𝐹)
74, 1, 5, 2, 6ldualelvbase 33432 . . 3 (𝜑𝐺 ∈ (Base‘𝐷))
8 ldualvsub.h . . . 4 (𝜑𝐻𝐹)
94, 1, 5, 2, 8ldualelvbase 33432 . . 3 (𝜑𝐻 ∈ (Base‘𝐷))
10 ldualvsub.p . . . 4 + = (+g𝐷)
11 ldualvsub.m . . . 4 = (-g𝐷)
12 eqid 2610 . . . 4 (Scalar‘𝐷) = (Scalar‘𝐷)
13 ldualvsub.t . . . 4 · = ( ·𝑠𝐷)
14 eqid 2610 . . . 4 (invg‘(Scalar‘𝐷)) = (invg‘(Scalar‘𝐷))
15 eqid 2610 . . . 4 (1r‘(Scalar‘𝐷)) = (1r‘(Scalar‘𝐷))
165, 10, 11, 12, 13, 14, 15lmodvsubval2 18741 . . 3 ((𝐷 ∈ LMod ∧ 𝐺 ∈ (Base‘𝐷) ∧ 𝐻 ∈ (Base‘𝐷)) → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
173, 7, 9, 16syl3anc 1318 . 2 (𝜑 → (𝐺 𝐻) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
18 ldualvsub.r . . . . . . . 8 𝑅 = (Scalar‘𝑊)
19 eqid 2610 . . . . . . . 8 (oppr𝑅) = (oppr𝑅)
2018, 19, 1, 12, 2ldualsca 33437 . . . . . . 7 (𝜑 → (Scalar‘𝐷) = (oppr𝑅))
2120fveq2d 6107 . . . . . 6 (𝜑 → (invg‘(Scalar‘𝐷)) = (invg‘(oppr𝑅)))
22 ldualvsub.n . . . . . . 7 𝑁 = (invg𝑅)
2319, 22opprneg 18458 . . . . . 6 𝑁 = (invg‘(oppr𝑅))
2421, 23syl6reqr 2663 . . . . 5 (𝜑𝑁 = (invg‘(Scalar‘𝐷)))
2520fveq2d 6107 . . . . . 6 (𝜑 → (1r‘(Scalar‘𝐷)) = (1r‘(oppr𝑅)))
26 ldualvsub.u . . . . . . 7 1 = (1r𝑅)
2719, 26oppr1 18457 . . . . . 6 1 = (1r‘(oppr𝑅))
2825, 27syl6reqr 2663 . . . . 5 (𝜑1 = (1r‘(Scalar‘𝐷)))
2924, 28fveq12d 6109 . . . 4 (𝜑 → (𝑁1 ) = ((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))))
3029oveq1d 6564 . . 3 (𝜑 → ((𝑁1 ) · 𝐻) = (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻))
3130oveq2d 6565 . 2 (𝜑 → (𝐺 + ((𝑁1 ) · 𝐻)) = (𝐺 + (((invg‘(Scalar‘𝐷))‘(1r‘(Scalar‘𝐷))) · 𝐻)))
3217, 31eqtr4d 2647 1 (𝜑 → (𝐺 𝐻) = (𝐺 + ((𝑁1 ) · 𝐻)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  invgcminusg 17246  -gcsg 17247  1rcur 18324  opprcoppr 18445  LModclmod 18686  LFnlclfn 33362  LDualcld 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-lmod 18688  df-lfl 33363  df-ldual 33429
This theorem is referenced by:  ldualvsubcl  33461  lcfrlem2  35850
  Copyright terms: Public domain W3C validator