Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldualvsubcl Structured version   Visualization version   GIF version

Theorem ldualvsubcl 33461
Description: Closure of vector subtraction in the dual of a vector space. (Contributed by NM, 27-Feb-2015.)
Hypotheses
Ref Expression
ldualvsubcl.f 𝐹 = (LFnl‘𝑊)
ldualvsubcl.d 𝐷 = (LDual‘𝑊)
ldualvsubcl.m = (-g𝐷)
ldualvsubcl.w (𝜑𝑊 ∈ LMod)
ldualvsubcl.g (𝜑𝐺𝐹)
ldualvsubcl.h (𝜑𝐻𝐹)
Assertion
Ref Expression
ldualvsubcl (𝜑 → (𝐺 𝐻) ∈ 𝐹)

Proof of Theorem ldualvsubcl
StepHypRef Expression
1 eqid 2610 . . 3 (Scalar‘𝑊) = (Scalar‘𝑊)
2 eqid 2610 . . 3 (invg‘(Scalar‘𝑊)) = (invg‘(Scalar‘𝑊))
3 eqid 2610 . . 3 (1r‘(Scalar‘𝑊)) = (1r‘(Scalar‘𝑊))
4 ldualvsubcl.f . . 3 𝐹 = (LFnl‘𝑊)
5 ldualvsubcl.d . . 3 𝐷 = (LDual‘𝑊)
6 eqid 2610 . . 3 (+g𝐷) = (+g𝐷)
7 eqid 2610 . . 3 ( ·𝑠𝐷) = ( ·𝑠𝐷)
8 ldualvsubcl.m . . 3 = (-g𝐷)
9 ldualvsubcl.w . . 3 (𝜑𝑊 ∈ LMod)
10 ldualvsubcl.g . . 3 (𝜑𝐺𝐹)
11 ldualvsubcl.h . . 3 (𝜑𝐻𝐹)
121, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11ldualvsub 33460 . 2 (𝜑 → (𝐺 𝐻) = (𝐺(+g𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻)))
13 eqid 2610 . . . 4 (Base‘(Scalar‘𝑊)) = (Base‘(Scalar‘𝑊))
141lmodring 18694 . . . . . . 7 (𝑊 ∈ LMod → (Scalar‘𝑊) ∈ Ring)
159, 14syl 17 . . . . . 6 (𝜑 → (Scalar‘𝑊) ∈ Ring)
16 ringgrp 18375 . . . . . 6 ((Scalar‘𝑊) ∈ Ring → (Scalar‘𝑊) ∈ Grp)
1715, 16syl 17 . . . . 5 (𝜑 → (Scalar‘𝑊) ∈ Grp)
1813, 3ringidcl 18391 . . . . . 6 ((Scalar‘𝑊) ∈ Ring → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
1915, 18syl 17 . . . . 5 (𝜑 → (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊)))
2013, 2grpinvcl 17290 . . . . 5 (((Scalar‘𝑊) ∈ Grp ∧ (1r‘(Scalar‘𝑊)) ∈ (Base‘(Scalar‘𝑊))) → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
2117, 19, 20syl2anc 691 . . . 4 (𝜑 → ((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊))) ∈ (Base‘(Scalar‘𝑊)))
224, 1, 13, 5, 7, 9, 21, 11ldualvscl 33444 . . 3 (𝜑 → (((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻) ∈ 𝐹)
234, 5, 6, 9, 10, 22ldualvaddcl 33435 . 2 (𝜑 → (𝐺(+g𝐷)(((invg‘(Scalar‘𝑊))‘(1r‘(Scalar‘𝑊)))( ·𝑠𝐷)𝐻)) ∈ 𝐹)
2412, 23eqeltrd 2688 1 (𝜑 → (𝐺 𝐻) ∈ 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  Basecbs 15695  +gcplusg 15768  Scalarcsca 15771   ·𝑠 cvsca 15772  Grpcgrp 17245  invgcminusg 17246  -gcsg 17247  1rcur 18324  Ringcrg 18370  LModclmod 18686  LFnlclfn 33362  LDualcld 33428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-mulr 15782  df-sca 15784  df-vsca 15785  df-0g 15925  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-grp 17248  df-minusg 17249  df-sbg 17250  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-oppr 18446  df-lmod 18688  df-lfl 33363  df-ldual 33429
This theorem is referenced by:  lcfrlem3  35851  lcfrlem30  35879
  Copyright terms: Public domain W3C validator