Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ldepslinc Structured version   Visualization version   GIF version

Theorem ldepslinc 42092
Description: For (left) vector spaces, isldepslvec2 42068 provides an alternative definition of being a linearly dependent subset, whereas ldepsnlinc 42091 indicates that there is not an analogous alternative definition for arbitrary (left) modules. (Contributed by AV, 25-May-2019.) (Revised by AV, 30-Jul-2019.)
Assertion
Ref Expression
ldepslinc (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
Distinct variable group:   𝑓,𝑚,𝑠,𝑣

Proof of Theorem ldepslinc
StepHypRef Expression
1 eqid 2610 . . . . 5 (Base‘𝑚) = (Base‘𝑚)
2 eqid 2610 . . . . 5 (0g𝑚) = (0g𝑚)
3 eqid 2610 . . . . 5 (Scalar‘𝑚) = (Scalar‘𝑚)
4 eqid 2610 . . . . 5 (Base‘(Scalar‘𝑚)) = (Base‘(Scalar‘𝑚))
5 eqid 2610 . . . . 5 (0g‘(Scalar‘𝑚)) = (0g‘(Scalar‘𝑚))
61, 2, 3, 4, 5isldepslvec2 42068 . . . 4 ((𝑚 ∈ LVec ∧ 𝑠 ∈ 𝒫 (Base‘𝑚)) → (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ 𝑠 linDepS 𝑚))
76bicomd 212 . . 3 ((𝑚 ∈ LVec ∧ 𝑠 ∈ 𝒫 (Base‘𝑚)) → (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
87rgen2 2958 . 2 𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
9 ldepsnlinc 42091 . . . . . . 7 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣))
10 df-ne 2782 . . . . . . . . . . . . . . 15 ((𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣 ↔ ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)
1110imbi2i 325 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ (𝑓 finSupp (0g‘(Scalar‘𝑚)) → ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
12 imnan 437 . . . . . . . . . . . . . 14 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → ¬ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1311, 12bitri 263 . . . . . . . . . . . . 13 ((𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1413ralbii 2963 . . . . . . . . . . . 12 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣})) ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
15 ralnex 2975 . . . . . . . . . . . 12 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣})) ¬ (𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1614, 15bitri 263 . . . . . . . . . . 11 (∀𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1716ralbii 2963 . . . . . . . . . 10 (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ∀𝑣𝑠 ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
18 ralnex 2975 . . . . . . . . . 10 (∀𝑣𝑠 ¬ ∃𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ↔ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
1917, 18bitri 263 . . . . . . . . 9 (∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣) ↔ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
2019anbi2i 726 . . . . . . . 8 ((𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ (𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
21202rexbii 3024 . . . . . . 7 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ∀𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) → (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) ≠ 𝑣)) ↔ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
229, 21mpbi 219 . . . . . 6 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
2322orci 404 . . . . 5 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
24 r19.43 3074 . . . . 5 (∃𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2523, 24mpbir 220 . . . 4 𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
26 r19.43 3074 . . . . 5 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2726rexbii 3023 . . . 4 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑚 ∈ LMod (∃𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ ∃𝑠 ∈ 𝒫 (Base‘𝑚)(∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
2825, 27mpbir 220 . . 3 𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚))
29 xor 931 . . . . . . . 8 (¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)))
3029bicomi 213 . . . . . . 7 (((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3130rexbii 3023 . . . . . 6 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑠 ∈ 𝒫 (Base‘𝑚) ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
32 rexnal 2978 . . . . . 6 (∃𝑠 ∈ 𝒫 (Base‘𝑚) ¬ (𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3331, 32bitri 263 . . . . 5 (∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3433rexbii 3023 . . . 4 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ∃𝑚 ∈ LMod ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
35 rexnal 2978 . . . 4 (∃𝑚 ∈ LMod ¬ ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ↔ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3634, 35bitri 263 . . 3 (∃𝑚 ∈ LMod ∃𝑠 ∈ 𝒫 (Base‘𝑚)((𝑠 linDepS 𝑚 ∧ ¬ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∨ (∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣) ∧ ¬ 𝑠 linDepS 𝑚)) ↔ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
3728, 36mpbi 219 . 2 ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣))
388, 37pm3.2i 470 1 (∀𝑚 ∈ LVec ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)) ∧ ¬ ∀𝑚 ∈ LMod ∀𝑠 ∈ 𝒫 (Base‘𝑚)(𝑠 linDepS 𝑚 ↔ ∃𝑣𝑠𝑓 ∈ ((Base‘(Scalar‘𝑚)) ↑𝑚 (𝑠 ∖ {𝑣}))(𝑓 finSupp (0g‘(Scalar‘𝑚)) ∧ (𝑓( linC ‘𝑚)(𝑠 ∖ {𝑣})) = 𝑣)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wo 382  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  cdif 3537  𝒫 cpw 4108  {csn 4125   class class class wbr 4583  cfv 5804  (class class class)co 6549  𝑚 cmap 7744   finSupp cfsupp 8158  Basecbs 15695  Scalarcsca 15771  0gc0g 15923  LModclmod 18686  LVecclvec 18923   linC clinc 41987   linDepS clindeps 42024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-tpos 7239  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-ixp 7795  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-dvds 14822  df-prm 15224  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-mulr 15782  df-starv 15783  df-sca 15784  df-vsca 15785  df-ip 15786  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-hom 15793  df-cco 15794  df-0g 15925  df-gsum 15926  df-prds 15931  df-pws 15933  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-submnd 17159  df-grp 17248  df-minusg 17249  df-sbg 17250  df-mulg 17364  df-subg 17414  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-cring 18373  df-oppr 18446  df-dvdsr 18464  df-unit 18465  df-invr 18495  df-drng 18572  df-subrg 18601  df-lmod 18688  df-lss 18754  df-lvec 18924  df-sra 18993  df-rgmod 18994  df-nzr 19079  df-cnfld 19568  df-zring 19638  df-dsmm 19895  df-frlm 19910  df-linc 41989  df-lininds 42025  df-lindeps 42027
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator