Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isomennd Structured version   Visualization version   GIF version

Theorem isomennd 39421
 Description: Sufficient condition to prove that 𝑂 is an outer measure. Definition 113A of [Fremlin1] p. 19 . (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
isomennd.x (𝜑𝑋𝑉)
isomennd.o (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
isomennd.o0 (𝜑 → (𝑂‘∅) = 0)
isomennd.le ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))
isomennd.sa ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
Assertion
Ref Expression
isomennd (𝜑𝑂 ∈ OutMeas)
Distinct variable groups:   𝑂,𝑎,𝑛,𝑥   𝑦,𝑂,𝑥   𝑋,𝑎   𝜑,𝑎,𝑛,𝑥   𝜑,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑛,𝑎)   𝑋(𝑥,𝑦,𝑛)

Proof of Theorem isomennd
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isomennd.o . . . . 5 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
2 id 22 . . . . . 6 (𝑂:𝒫 𝑋⟶(0[,]+∞) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
3 fdm 5964 . . . . . . 7 (𝑂:𝒫 𝑋⟶(0[,]+∞) → dom 𝑂 = 𝒫 𝑋)
43feq2d 5944 . . . . . 6 (𝑂:𝒫 𝑋⟶(0[,]+∞) → (𝑂:dom 𝑂⟶(0[,]+∞) ↔ 𝑂:𝒫 𝑋⟶(0[,]+∞)))
52, 4mpbird 246 . . . . 5 (𝑂:𝒫 𝑋⟶(0[,]+∞) → 𝑂:dom 𝑂⟶(0[,]+∞))
61, 5syl 17 . . . 4 (𝜑𝑂:dom 𝑂⟶(0[,]+∞))
7 unipw 4845 . . . . . . 7 𝒫 𝑋 = 𝑋
87pweqi 4112 . . . . . 6 𝒫 𝒫 𝑋 = 𝒫 𝑋
98a1i 11 . . . . 5 (𝜑 → 𝒫 𝒫 𝑋 = 𝒫 𝑋)
101, 3syl 17 . . . . . . 7 (𝜑 → dom 𝑂 = 𝒫 𝑋)
1110unieqd 4382 . . . . . 6 (𝜑 dom 𝑂 = 𝒫 𝑋)
1211pweqd 4113 . . . . 5 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
139, 12, 103eqtr4rd 2655 . . . 4 (𝜑 → dom 𝑂 = 𝒫 dom 𝑂)
14 isomennd.o0 . . . 4 (𝜑 → (𝑂‘∅) = 0)
156, 13, 14jca31 555 . . 3 (𝜑 → ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0))
16 simpl 472 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝜑)
17 simpr 476 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 dom 𝑂)
1812, 9eqtrd 2644 . . . . . . . . 9 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝑋)
1918adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝒫 dom 𝑂 = 𝒫 𝑋)
2017, 19eleqtrd 2690 . . . . . . 7 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 𝑋)
21 elpwi 4117 . . . . . . 7 (𝑥 ∈ 𝒫 𝑋𝑥𝑋)
2220, 21syl 17 . . . . . 6 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥𝑋)
2322adantrr 749 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝑥𝑋)
24 elpwi 4117 . . . . . . 7 (𝑦 ∈ 𝒫 𝑥𝑦𝑥)
2524adantl 481 . . . . . 6 ((𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥) → 𝑦𝑥)
2625adantl 481 . . . . 5 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → 𝑦𝑥)
27 isomennd.le . . . . 5 ((𝜑𝑥𝑋𝑦𝑥) → (𝑂𝑦) ≤ (𝑂𝑥))
2816, 23, 26, 27syl3anc 1318 . . . 4 ((𝜑 ∧ (𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥)) → (𝑂𝑦) ≤ (𝑂𝑥))
2928ralrimivva 2954 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥))
30 0le0 10987 . . . . . . . . 9 0 ≤ 0
3130a1i 11 . . . . . . . 8 ((𝜑𝑥 = ∅) → 0 ≤ 0)
32 unieq 4380 . . . . . . . . . . . . 13 (𝑥 = ∅ → 𝑥 = ∅)
33 uni0 4401 . . . . . . . . . . . . . 14 ∅ = ∅
3433a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → ∅ = ∅)
3532, 34eqtrd 2644 . . . . . . . . . . . 12 (𝑥 = ∅ → 𝑥 = ∅)
3635fveq2d 6107 . . . . . . . . . . 11 (𝑥 = ∅ → (𝑂 𝑥) = (𝑂‘∅))
3736adantl 481 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (𝑂 𝑥) = (𝑂‘∅))
3814adantr 480 . . . . . . . . . 10 ((𝜑𝑥 = ∅) → (𝑂‘∅) = 0)
3937, 38eqtrd 2644 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (𝑂 𝑥) = 0)
40 reseq2 5312 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑂𝑥) = (𝑂 ↾ ∅))
41 res0 5321 . . . . . . . . . . . . . 14 (𝑂 ↾ ∅) = ∅
4241a1i 11 . . . . . . . . . . . . 13 (𝑥 = ∅ → (𝑂 ↾ ∅) = ∅)
4340, 42eqtrd 2644 . . . . . . . . . . . 12 (𝑥 = ∅ → (𝑂𝑥) = ∅)
4443fveq2d 6107 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘(𝑂𝑥)) = (Σ^‘∅))
45 sge00 39269 . . . . . . . . . . . 12 ^‘∅) = 0
4645a1i 11 . . . . . . . . . . 11 (𝑥 = ∅ → (Σ^‘∅) = 0)
4744, 46eqtrd 2644 . . . . . . . . . 10 (𝑥 = ∅ → (Σ^‘(𝑂𝑥)) = 0)
4847adantl 481 . . . . . . . . 9 ((𝜑𝑥 = ∅) → (Σ^‘(𝑂𝑥)) = 0)
4939, 48breq12d 4596 . . . . . . . 8 ((𝜑𝑥 = ∅) → ((𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)) ↔ 0 ≤ 0))
5031, 49mpbird 246 . . . . . . 7 ((𝜑𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
5150ad4ant14 1285 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
52 simpl 472 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → ((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω))
53 neqne 2790 . . . . . . . 8 𝑥 = ∅ → 𝑥 ≠ ∅)
5453adantl 481 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → 𝑥 ≠ ∅)
55 ssnnf1octb 38377 . . . . . . . . 9 ((𝑥 ≼ ω ∧ 𝑥 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥))
5655adantll 746 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥))
571ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑂:𝒫 𝑋⟶(0[,]+∞))
5814ad2antrr 758 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → (𝑂‘∅) = 0)
59 simpr 476 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 dom 𝑂)
6010pweqd 4113 . . . . . . . . . . . . . . . 16 (𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6160adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋)
6259, 61eleqtrd 2690 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ∈ 𝒫 𝒫 𝑋)
63 elpwi 4117 . . . . . . . . . . . . . 14 (𝑥 ∈ 𝒫 𝒫 𝑋𝑥 ⊆ 𝒫 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝑥 ⊆ 𝒫 𝑋)
6564adantr 480 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑥 ⊆ 𝒫 𝑋)
66 simpl 472 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → 𝜑)
67 isomennd.sa . . . . . . . . . . . . . 14 ((𝜑𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
6866, 67sylan 487 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
6968adantlr 747 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) ∧ 𝑎:ℕ⟶𝒫 𝑋) → (𝑂 𝑛 ∈ ℕ (𝑎𝑛)) ≤ (Σ^‘(𝑛 ∈ ℕ ↦ (𝑂‘(𝑎𝑛)))))
70 simprl 790 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → dom 𝑓 ⊆ ℕ)
71 simprr 792 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → 𝑓:dom 𝑓1-1-onto𝑥)
72 eleq1 2676 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑚 ∈ dom 𝑓𝑛 ∈ dom 𝑓))
73 fveq2 6103 . . . . . . . . . . . . . 14 (𝑚 = 𝑛 → (𝑓𝑚) = (𝑓𝑛))
7472, 73ifbieq1d 4059 . . . . . . . . . . . . 13 (𝑚 = 𝑛 → if(𝑚 ∈ dom 𝑓, (𝑓𝑚), ∅) = if(𝑛 ∈ dom 𝑓, (𝑓𝑛), ∅))
7574cbvmptv 4678 . . . . . . . . . . . 12 (𝑚 ∈ ℕ ↦ if(𝑚 ∈ dom 𝑓, (𝑓𝑚), ∅)) = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ dom 𝑓, (𝑓𝑛), ∅))
7657, 58, 65, 69, 70, 71, 75isomenndlem 39420 . . . . . . . . . . 11 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ (dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥)) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
7776ex 449 . . . . . . . . . 10 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
7877ad2antrr 758 . . . . . . . . 9 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
7978exlimdv 1848 . . . . . . . 8 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → (∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝑥) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8056, 79mpd 15 . . . . . . 7 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ 𝑥 ≠ ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8152, 54, 80syl2anc 691 . . . . . 6 ((((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) ∧ ¬ 𝑥 = ∅) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8251, 81pm2.61dan 828 . . . . 5 (((𝜑𝑥 ∈ 𝒫 dom 𝑂) ∧ 𝑥 ≼ ω) → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))
8382ex 449 . . . 4 ((𝜑𝑥 ∈ 𝒫 dom 𝑂) → (𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8483ralrimiva 2949 . . 3 (𝜑 → ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))
8515, 29, 84jca31 555 . 2 (𝜑 → ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥)))))
86 isomennd.x . . . . 5 (𝜑𝑋𝑉)
87 pwexg 4776 . . . . 5 (𝑋𝑉 → 𝒫 𝑋 ∈ V)
8886, 87syl 17 . . . 4 (𝜑 → 𝒫 𝑋 ∈ V)
89 fex 6394 . . . 4 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝒫 𝑋 ∈ V) → 𝑂 ∈ V)
901, 88, 89syl2anc 691 . . 3 (𝜑𝑂 ∈ V)
91 isome 39384 . . 3 (𝑂 ∈ V → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
9290, 91syl 17 . 2 (𝜑 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑥(𝑂𝑦) ≤ (𝑂𝑥)) ∧ ∀𝑥 ∈ 𝒫 dom 𝑂(𝑥 ≼ ω → (𝑂 𝑥) ≤ (Σ^‘(𝑂𝑥))))))
9385, 92mpbird 246 1 (𝜑𝑂 ∈ OutMeas)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   ∧ w3a 1031   = wceq 1475  ∃wex 1695   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  Vcvv 3173   ⊆ wss 3540  ∅c0 3874  ifcif 4036  𝒫 cpw 4108  ∪ cuni 4372  ∪ ciun 4455   class class class wbr 4583   ↦ cmpt 4643  dom cdm 5038   ↾ cres 5040  ⟶wf 5800  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ≼ cdom 7839  0cc0 9815  +∞cpnf 9950   ≤ cle 9954  ℕcn 10897  [,]cicc 12049  Σ^csumge0 39255  OutMeascome 39379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-sumge0 39256  df-ome 39380 This theorem is referenced by:  ovnome  39463
 Copyright terms: Public domain W3C validator