Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isome Structured version   Visualization version   GIF version

Theorem isome 39384
 Description: Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Assertion
Ref Expression
isome (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
Distinct variable group:   𝑦,𝑂,𝑧
Allowed substitution hints:   𝑉(𝑦,𝑧)

Proof of Theorem isome
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ome 39380 . . . 4 OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}
21a1i 11 . . 3 (𝑂𝑉 → OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))})
32eleq2d 2673 . 2 (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ 𝑂 ∈ {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))}))
4 id 22 . . . . . . . 8 (𝑥 = 𝑂𝑥 = 𝑂)
5 dmeq 5246 . . . . . . . 8 (𝑥 = 𝑂 → dom 𝑥 = dom 𝑂)
64, 5feq12d 5946 . . . . . . 7 (𝑥 = 𝑂 → (𝑥:dom 𝑥⟶(0[,]+∞) ↔ 𝑂:dom 𝑂⟶(0[,]+∞)))
75unieqd 4382 . . . . . . . . 9 (𝑥 = 𝑂 dom 𝑥 = dom 𝑂)
87pweqd 4113 . . . . . . . 8 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
95, 8eqeq12d 2625 . . . . . . 7 (𝑥 = 𝑂 → (dom 𝑥 = 𝒫 dom 𝑥 ↔ dom 𝑂 = 𝒫 dom 𝑂))
106, 9anbi12d 743 . . . . . 6 (𝑥 = 𝑂 → ((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ↔ (𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂)))
11 fveq1 6102 . . . . . . 7 (𝑥 = 𝑂 → (𝑥‘∅) = (𝑂‘∅))
1211eqeq1d 2612 . . . . . 6 (𝑥 = 𝑂 → ((𝑥‘∅) = 0 ↔ (𝑂‘∅) = 0))
1310, 12anbi12d 743 . . . . 5 (𝑥 = 𝑂 → (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ↔ ((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0)))
148raleqdv 3121 . . . . . 6 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)))
15 fveq1 6102 . . . . . . . . 9 (𝑥 = 𝑂 → (𝑥𝑧) = (𝑂𝑧))
16 fveq1 6102 . . . . . . . . 9 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
1715, 16breq12d 4596 . . . . . . . 8 (𝑥 = 𝑂 → ((𝑥𝑧) ≤ (𝑥𝑦) ↔ (𝑂𝑧) ≤ (𝑂𝑦)))
1817ralbidv 2969 . . . . . . 7 (𝑥 = 𝑂 → (∀𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
1918ralbidv 2969 . . . . . 6 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
2014, 19bitrd 267 . . . . 5 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)))
2113, 20anbi12d 743 . . . 4 (𝑥 = 𝑂 → ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ↔ (((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦))))
225pweqd 4113 . . . . . 6 (𝑥 = 𝑂 → 𝒫 dom 𝑥 = 𝒫 dom 𝑂)
2322raleqdv 3121 . . . . 5 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)))))
24 fveq1 6102 . . . . . . . 8 (𝑥 = 𝑂 → (𝑥 𝑦) = (𝑂 𝑦))
25 reseq1 5311 . . . . . . . . 9 (𝑥 = 𝑂 → (𝑥𝑦) = (𝑂𝑦))
2625fveq2d 6107 . . . . . . . 8 (𝑥 = 𝑂 → (Σ^‘(𝑥𝑦)) = (Σ^‘(𝑂𝑦)))
2724, 26breq12d 4596 . . . . . . 7 (𝑥 = 𝑂 → ((𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)) ↔ (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))
2827imbi2d 329 . . . . . 6 (𝑥 = 𝑂 → ((𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ (𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
2928ralbidv 2969 . . . . 5 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
3023, 29bitrd 267 . . . 4 (𝑥 = 𝑂 → (∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))) ↔ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦)))))
3121, 30anbi12d 743 . . 3 (𝑥 = 𝑂 → (((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦)))) ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
3231elabg 3320 . 2 (𝑂𝑉 → (𝑂 ∈ {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥𝑧 ∈ 𝒫 𝑦(𝑥𝑧) ≤ (𝑥𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥 𝑦) ≤ (Σ^‘(𝑥𝑦))))} ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
333, 32bitrd 267 1 (𝑂𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦(𝑂𝑧) ≤ (𝑂𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂 𝑦) ≤ (Σ^‘(𝑂𝑦))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∅c0 3874  𝒫 cpw 4108  ∪ cuni 4372   class class class wbr 4583  dom cdm 5038   ↾ cres 5040  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549  ωcom 6957   ≼ cdom 7839  0cc0 9815  +∞cpnf 9950   ≤ cle 9954  [,]cicc 12049  Σ^csumge0 39255  OutMeascome 39379 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-fv 5812  df-ome 39380 This theorem is referenced by:  omef  39386  ome0  39387  omessle  39388  omedm  39389  omeunile  39395  0ome  39419  isomennd  39421
 Copyright terms: Public domain W3C validator