Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssnnf1octb Structured version   Visualization version   GIF version

Theorem ssnnf1octb 38377
Description: There exists a bijection between a subset of and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Assertion
Ref Expression
ssnnf1octb ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Distinct variable group:   𝐴,𝑓

Proof of Theorem ssnnf1octb
Dummy variables 𝑔 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnfoctb 38238 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑔 𝑔:ℕ–onto𝐴)
2 fofn 6030 . . . . . 6 (𝑔:ℕ–onto𝐴𝑔 Fn ℕ)
3 nnex 10903 . . . . . . 7 ℕ ∈ V
43a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → ℕ ∈ V)
5 ltwenn 12623 . . . . . . 7 < We ℕ
65a1i 11 . . . . . 6 (𝑔:ℕ–onto𝐴 → < We ℕ)
72, 4, 6wessf1orn 38367 . . . . 5 (𝑔:ℕ–onto𝐴 → ∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔)
8 f1odm 6054 . . . . . . . . . . 11 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → dom (𝑔𝑥) = 𝑥)
98adantl 481 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) = 𝑥)
10 elpwi 4117 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 ℕ → 𝑥 ⊆ ℕ)
1110adantr 480 . . . . . . . . . 10 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 ⊆ ℕ)
129, 11eqsstrd 3602 . . . . . . . . 9 ((𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
13123adant1 1072 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → dom (𝑔𝑥) ⊆ ℕ)
14 simpr 476 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):𝑥1-1-onto→ran 𝑔)
15 eqidd 2611 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥) = (𝑔𝑥))
168eqcomd 2616 . . . . . . . . . . . 12 ((𝑔𝑥):𝑥1-1-onto→ran 𝑔𝑥 = dom (𝑔𝑥))
1716adantl 481 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → 𝑥 = dom (𝑔𝑥))
18 forn 6031 . . . . . . . . . . . 12 (𝑔:ℕ–onto𝐴 → ran 𝑔 = 𝐴)
1918adantr 480 . . . . . . . . . . 11 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ran 𝑔 = 𝐴)
2015, 17, 19f1oeq123d 6046 . . . . . . . . . 10 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
2114, 20mpbid 221 . . . . . . . . 9 ((𝑔:ℕ–onto𝐴 ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
22213adant2 1073 . . . . . . . 8 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)
23 vex 3176 . . . . . . . . . 10 𝑔 ∈ V
2423resex 5363 . . . . . . . . 9 (𝑔𝑥) ∈ V
25 dmeq 5246 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → dom 𝑓 = dom (𝑔𝑥))
2625sseq1d 3595 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (dom 𝑓 ⊆ ℕ ↔ dom (𝑔𝑥) ⊆ ℕ))
27 id 22 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝑓 = (𝑔𝑥))
28 eqidd 2611 . . . . . . . . . . 11 (𝑓 = (𝑔𝑥) → 𝐴 = 𝐴)
2927, 25, 28f1oeq123d 6046 . . . . . . . . . 10 (𝑓 = (𝑔𝑥) → (𝑓:dom 𝑓1-1-onto𝐴 ↔ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴))
3026, 29anbi12d 743 . . . . . . . . 9 (𝑓 = (𝑔𝑥) → ((dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴) ↔ (dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴)))
3124, 30spcev 3273 . . . . . . . 8 ((dom (𝑔𝑥) ⊆ ℕ ∧ (𝑔𝑥):dom (𝑔𝑥)–1-1-onto𝐴) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3213, 22, 31syl2anc 691 . . . . . . 7 ((𝑔:ℕ–onto𝐴𝑥 ∈ 𝒫 ℕ ∧ (𝑔𝑥):𝑥1-1-onto→ran 𝑔) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
33323exp 1256 . . . . . 6 (𝑔:ℕ–onto𝐴 → (𝑥 ∈ 𝒫 ℕ → ((𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))))
3433rexlimdv 3012 . . . . 5 (𝑔:ℕ–onto𝐴 → (∃𝑥 ∈ 𝒫 ℕ(𝑔𝑥):𝑥1-1-onto→ran 𝑔 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
357, 34mpd 15 . . . 4 (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
3635a1i 11 . . 3 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
3736exlimdv 1848 . 2 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → (∃𝑔 𝑔:ℕ–onto𝐴 → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴)))
381, 37mpd 15 1 ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓1-1-onto𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  wss 3540  c0 3874  𝒫 cpw 4108   class class class wbr 4583   We wwe 4996  dom cdm 5038  ran crn 5039  cres 5040  ontowfo 5802  1-1-ontowf1o 5803  ωcom 6957  cdom 7839   < clt 9953  cn 10897
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564
This theorem is referenced by:  isomennd  39421
  Copyright terms: Public domain W3C validator