MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbfd Structured version   Visualization version   GIF version

Theorem ismbfd 23213
Description: Deduction to prove measurability of a real function. The third hypothesis is not necessary, but the proof of this requires countable choice, so we derive this separately as ismbf3d 23227. (Contributed by Mario Carneiro, 18-Jun-2014.)
Hypotheses
Ref Expression
ismbfd.1 (𝜑𝐹:𝐴⟶ℝ)
ismbfd.2 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
ismbfd.3 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
Assertion
Ref Expression
ismbfd (𝜑𝐹 ∈ MblFn)
Distinct variable groups:   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem ismbfd
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ioof 12142 . . . . 5 (,):(ℝ* × ℝ*)⟶𝒫 ℝ
2 ffn 5958 . . . . 5 ((,):(ℝ* × ℝ*)⟶𝒫 ℝ → (,) Fn (ℝ* × ℝ*))
3 ovelrn 6708 . . . . 5 ((,) Fn (ℝ* × ℝ*) → (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦)))
41, 2, 3mp2b 10 . . . 4 (𝑧 ∈ ran (,) ↔ ∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦))
5 simprl 790 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ∈ ℝ*)
6 pnfxr 9971 . . . . . . . . . . . 12 +∞ ∈ ℝ*
76a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → +∞ ∈ ℝ*)
8 mnfxr 9975 . . . . . . . . . . . 12 -∞ ∈ ℝ*
98a1i 11 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → -∞ ∈ ℝ*)
10 simprr 792 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ∈ ℝ*)
11 iooin 12080 . . . . . . . . . . 11 (((𝑥 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
125, 7, 9, 10, 11syl22anc 1319 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)))
13 mnfle 11845 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ* → -∞ ≤ 𝑥)
14 xrleid 11859 . . . . . . . . . . . . . 14 (𝑥 ∈ ℝ*𝑥𝑥)
15 breq1 4586 . . . . . . . . . . . . . . 15 (-∞ = if(𝑥 ≤ -∞, -∞, 𝑥) → (-∞ ≤ 𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
16 breq1 4586 . . . . . . . . . . . . . . 15 (𝑥 = if(𝑥 ≤ -∞, -∞, 𝑥) → (𝑥𝑥 ↔ if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥))
1715, 16ifboth 4074 . . . . . . . . . . . . . 14 ((-∞ ≤ 𝑥𝑥𝑥) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
1813, 14, 17syl2anc 691 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ* → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
1918ad2antrl 760 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥)
20 xrmax1 11880 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ -∞ ∈ ℝ*) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
215, 8, 20sylancl 693 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))
22 ifcl 4080 . . . . . . . . . . . . . 14 ((-∞ ∈ ℝ*𝑥 ∈ ℝ*) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
238, 5, 22sylancr 694 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*)
24 xrletri3 11861 . . . . . . . . . . . . 13 ((if(𝑥 ≤ -∞, -∞, 𝑥) ∈ ℝ*𝑥 ∈ ℝ*) → (if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥 ↔ (if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))))
2523, 5, 24syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥 ↔ (if(𝑥 ≤ -∞, -∞, 𝑥) ≤ 𝑥𝑥 ≤ if(𝑥 ≤ -∞, -∞, 𝑥))))
2619, 21, 25mpbir2and 959 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(𝑥 ≤ -∞, -∞, 𝑥) = 𝑥)
27 xrmin2 11883 . . . . . . . . . . . . 13 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
286, 10, 27sylancr 694 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦)
29 pnfge 11840 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦 ≤ +∞)
30 xrleid 11859 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ*𝑦𝑦)
31 breq2 4587 . . . . . . . . . . . . . . 15 (+∞ = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦 ≤ +∞ ↔ 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
32 breq2 4587 . . . . . . . . . . . . . . 15 (𝑦 = if(+∞ ≤ 𝑦, +∞, 𝑦) → (𝑦𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦)))
3331, 32ifboth 4074 . . . . . . . . . . . . . 14 ((𝑦 ≤ +∞ ∧ 𝑦𝑦) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3429, 30, 33syl2anc 691 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ*𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
3534ad2antll 761 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))
36 ifcl 4080 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ*𝑦 ∈ ℝ*) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
376, 10, 36sylancr 694 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*)
38 xrletri3 11861 . . . . . . . . . . . . 13 ((if(+∞ ≤ 𝑦, +∞, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → (if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦 ↔ (if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))))
3937, 10, 38syl2anc 691 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦 ↔ (if(+∞ ≤ 𝑦, +∞, 𝑦) ≤ 𝑦𝑦 ≤ if(+∞ ≤ 𝑦, +∞, 𝑦))))
4028, 35, 39mpbir2and 959 . . . . . . . . . . 11 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → if(+∞ ≤ 𝑦, +∞, 𝑦) = 𝑦)
4126, 40oveq12d 6567 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (if(𝑥 ≤ -∞, -∞, 𝑥)(,)if(+∞ ≤ 𝑦, +∞, 𝑦)) = (𝑥(,)𝑦))
4212, 41eqtrd 2644 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥(,)+∞) ∩ (-∞(,)𝑦)) = (𝑥(,)𝑦))
4342imaeq2d 5385 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = (𝐹 “ (𝑥(,)𝑦)))
44 ismbfd.1 . . . . . . . . . . 11 (𝜑𝐹:𝐴⟶ℝ)
4544adantr 480 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 𝐹:𝐴⟶ℝ)
46 ffun 5961 . . . . . . . . . 10 (𝐹:𝐴⟶ℝ → Fun 𝐹)
4745, 46syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → Fun 𝐹)
48 inpreima 6250 . . . . . . . . 9 (Fun 𝐹 → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
4947, 48syl 17 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ ((𝑥(,)+∞) ∩ (-∞(,)𝑦))) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
5043, 49eqtr3d 2646 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) = ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))))
51 ismbfd.2 . . . . . . . . 9 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
5251adantrr 749 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)+∞)) ∈ dom vol)
53 ismbfd.3 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
5453ralrimiva 2949 . . . . . . . . . 10 (𝜑 → ∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol)
55 oveq2 6557 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → (-∞(,)𝑥) = (-∞(,)𝑦))
5655imaeq2d 5385 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝐹 “ (-∞(,)𝑥)) = (𝐹 “ (-∞(,)𝑦)))
5756eleq1d 2672 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝐹 “ (-∞(,)𝑥)) ∈ dom vol ↔ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol))
5857rspccva 3281 . . . . . . . . . 10 ((∀𝑥 ∈ ℝ* (𝐹 “ (-∞(,)𝑥)) ∈ dom vol ∧ 𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
5954, 58sylan 487 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
6059adantrl 748 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (-∞(,)𝑦)) ∈ dom vol)
61 inmbl 23117 . . . . . . . 8 (((𝐹 “ (𝑥(,)+∞)) ∈ dom vol ∧ (𝐹 “ (-∞(,)𝑦)) ∈ dom vol) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
6252, 60, 61syl2anc 691 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝐹 “ (𝑥(,)+∞)) ∩ (𝐹 “ (-∞(,)𝑦))) ∈ dom vol)
6350, 62eqeltrd 2688 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol)
64 imaeq2 5381 . . . . . . 7 (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) = (𝐹 “ (𝑥(,)𝑦)))
6564eleq1d 2672 . . . . . 6 (𝑧 = (𝑥(,)𝑦) → ((𝐹𝑧) ∈ dom vol ↔ (𝐹 “ (𝑥(,)𝑦)) ∈ dom vol))
6663, 65syl5ibrcom 236 . . . . 5 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → (𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
6766rexlimdvva 3020 . . . 4 (𝜑 → (∃𝑥 ∈ ℝ*𝑦 ∈ ℝ* 𝑧 = (𝑥(,)𝑦) → (𝐹𝑧) ∈ dom vol))
684, 67syl5bi 231 . . 3 (𝜑 → (𝑧 ∈ ran (,) → (𝐹𝑧) ∈ dom vol))
6968ralrimiv 2948 . 2 (𝜑 → ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol)
70 ismbf 23203 . . 3 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
7144, 70syl 17 . 2 (𝜑 → (𝐹 ∈ MblFn ↔ ∀𝑧 ∈ ran (,)(𝐹𝑧) ∈ dom vol))
7269, 71mpbird 246 1 (𝜑𝐹 ∈ MblFn)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  wrex 2897  cin 3539  ifcif 4036  𝒫 cpw 4108   class class class wbr 4583   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  Fun wfun 5798   Fn wfn 5799  wf 5800  (class class class)co 6549  cr 9814  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952  cle 9954  (,)cioo 12046  volcvol 23039  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194
This theorem is referenced by:  ismbf2d  23214  mbfmax  23222
  Copyright terms: Public domain W3C validator