MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ismbf Structured version   Visualization version   GIF version

Theorem ismbf 23203
Description: The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 23101. (Contributed by Mario Carneiro, 17-Jun-2014.)
Assertion
Ref Expression
ismbf (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐴

Proof of Theorem ismbf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 mbfdm 23201 . . 3 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
2 fdm 5964 . . . 4 (𝐹:𝐴⟶ℝ → dom 𝐹 = 𝐴)
32eleq1d 2672 . . 3 (𝐹:𝐴⟶ℝ → (dom 𝐹 ∈ dom vol ↔ 𝐴 ∈ dom vol))
41, 3syl5ib 233 . 2 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn → 𝐴 ∈ dom vol))
5 ioomax 12119 . . . . 5 (-∞(,)+∞) = ℝ
6 ioorebas 12146 . . . . 5 (-∞(,)+∞) ∈ ran (,)
75, 6eqeltrri 2685 . . . 4 ℝ ∈ ran (,)
8 imaeq2 5381 . . . . . 6 (𝑥 = ℝ → (𝐹𝑥) = (𝐹 “ ℝ))
98eleq1d 2672 . . . . 5 (𝑥 = ℝ → ((𝐹𝑥) ∈ dom vol ↔ (𝐹 “ ℝ) ∈ dom vol))
109rspcv 3278 . . . 4 (ℝ ∈ ran (,) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol))
117, 10ax-mp 5 . . 3 (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → (𝐹 “ ℝ) ∈ dom vol)
12 fimacnv 6255 . . . 4 (𝐹:𝐴⟶ℝ → (𝐹 “ ℝ) = 𝐴)
1312eleq1d 2672 . . 3 (𝐹:𝐴⟶ℝ → ((𝐹 “ ℝ) ∈ dom vol ↔ 𝐴 ∈ dom vol))
1411, 13syl5ib 233 . 2 (𝐹:𝐴⟶ℝ → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol → 𝐴 ∈ dom vol))
15 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1615adantlr 747 . . . . . . . . . . . . 13 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℝ)
1716rered 13812 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℜ‘(𝐹𝑥)) = (𝐹𝑥))
1817mpteq2dva 4672 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))) = (𝑥𝐴 ↦ (𝐹𝑥)))
1916recnd 9947 . . . . . . . . . . . 12 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (𝐹𝑥) ∈ ℂ)
20 simpl 472 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹:𝐴⟶ℝ)
2120feqmptd 6159 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
22 ref 13700 . . . . . . . . . . . . . 14 ℜ:ℂ⟶ℝ
2322a1i 11 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ:ℂ⟶ℝ)
2423feqmptd 6159 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℜ = (𝑦 ∈ ℂ ↦ (ℜ‘𝑦)))
25 fveq2 6103 . . . . . . . . . . . 12 (𝑦 = (𝐹𝑥) → (ℜ‘𝑦) = (ℜ‘(𝐹𝑥)))
2619, 21, 24, 25fmptco 6303 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℜ ∘ 𝐹) = (𝑥𝐴 ↦ (ℜ‘(𝐹𝑥))))
2718, 26, 213eqtr4rd 2655 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2827cnveqd 5220 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 = (ℜ ∘ 𝐹))
2928imaeq1d 5384 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹𝑥) = ((ℜ ∘ 𝐹) “ 𝑥))
3029eleq1d 2672 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ ((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol))
31 imf 13701 . . . . . . . . . . . . . . . 16 ℑ:ℂ⟶ℝ
3231a1i 11 . . . . . . . . . . . . . . 15 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ:ℂ⟶ℝ)
3332feqmptd 6159 . . . . . . . . . . . . . 14 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ℑ = (𝑦 ∈ ℂ ↦ (ℑ‘𝑦)))
34 fveq2 6103 . . . . . . . . . . . . . 14 (𝑦 = (𝐹𝑥) → (ℑ‘𝑦) = (ℑ‘(𝐹𝑥)))
3519, 21, 33, 34fmptco 6303 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))))
3616reim0d 13813 . . . . . . . . . . . . . 14 (((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) ∧ 𝑥𝐴) → (ℑ‘(𝐹𝑥)) = 0)
3736mpteq2dva 4672 . . . . . . . . . . . . 13 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝑥𝐴 ↦ (ℑ‘(𝐹𝑥))) = (𝑥𝐴 ↦ 0))
3835, 37eqtrd 2644 . . . . . . . . . . . 12 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝑥𝐴 ↦ 0))
39 fconstmpt 5085 . . . . . . . . . . . 12 (𝐴 × {0}) = (𝑥𝐴 ↦ 0)
4038, 39syl6eqr 2662 . . . . . . . . . . 11 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4140cnveqd 5220 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (ℑ ∘ 𝐹) = (𝐴 × {0}))
4241imaeq1d 5384 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) = ((𝐴 × {0}) “ 𝑥))
43 simpr 476 . . . . . . . . . 10 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐴 ∈ dom vol)
44 0re 9919 . . . . . . . . . 10 0 ∈ ℝ
45 mbfconstlem 23202 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ 0 ∈ ℝ) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4643, 44, 45sylancl 693 . . . . . . . . 9 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐴 × {0}) “ 𝑥) ∈ dom vol)
4742, 46eqeltrd 2688 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)
4847biantrud 527 . . . . . . 7 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
4930, 48bitrd 267 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → ((𝐹𝑥) ∈ dom vol ↔ (((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
5049ralbidv 2969 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
51 ax-resscn 9872 . . . . . . . 8 ℝ ⊆ ℂ
52 fss 5969 . . . . . . . 8 ((𝐹:𝐴⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:𝐴⟶ℂ)
5351, 52mpan2 703 . . . . . . 7 (𝐹:𝐴⟶ℝ → 𝐹:𝐴⟶ℂ)
54 mblss 23106 . . . . . . 7 (𝐴 ∈ dom vol → 𝐴 ⊆ ℝ)
55 cnex 9896 . . . . . . . 8 ℂ ∈ V
56 reex 9906 . . . . . . . 8 ℝ ∈ V
57 elpm2r 7761 . . . . . . . 8 (((ℂ ∈ V ∧ ℝ ∈ V) ∧ (𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ)) → 𝐹 ∈ (ℂ ↑pm ℝ))
5855, 56, 57mpanl12 714 . . . . . . 7 ((𝐹:𝐴⟶ℂ ∧ 𝐴 ⊆ ℝ) → 𝐹 ∈ (ℂ ↑pm ℝ))
5953, 54, 58syl2an 493 . . . . . 6 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → 𝐹 ∈ (ℂ ↑pm ℝ))
6059biantrurd 528 . . . . 5 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol) ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
6150, 60bitrd 267 . . . 4 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))))
62 ismbf1 23199 . . . 4 (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)(((ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ ((ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol)))
6361, 62syl6rbbr 278 . . 3 ((𝐹:𝐴⟶ℝ ∧ 𝐴 ∈ dom vol) → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
6463ex 449 . 2 (𝐹:𝐴⟶ℝ → (𝐴 ∈ dom vol → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol)))
654, 14, 64pm5.21ndd 368 1 (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(𝐹𝑥) ∈ dom vol))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  wss 3540  {csn 4125  cmpt 4643   × cxp 5036  ccnv 5037  dom cdm 5038  ran crn 5039  cima 5041  ccom 5042  wf 5800  cfv 5804  (class class class)co 6549  pm cpm 7745  cc 9813  cr 9814  0cc0 9815  +∞cpnf 9950  -∞cmnf 9951  (,)cioo 12046  cre 13685  cim 13686  volcvol 23039  MblFncmbf 23189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-oi 8298  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-z 11255  df-uz 11564  df-q 11665  df-rp 11709  df-xadd 11823  df-ioo 12050  df-ico 12052  df-icc 12053  df-fz 12198  df-fzo 12335  df-fl 12455  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-xmet 19560  df-met 19561  df-ovol 23040  df-vol 23041  df-mbf 23194
This theorem is referenced by:  ismbfcn  23204  mbfima  23205  mbfid  23209  ismbfd  23213  mbfeqalem  23215  mbfres2  23218  mbfimaopnlem  23228  i1fd  23254  elmbfmvol2  29656  cnambfre  32628  mbf0  38849
  Copyright terms: Public domain W3C validator