MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1-3 Structured version   Visualization version   GIF version

Theorem isfin1-3 9091
Description: A set is I-finite iff every system of subsets contains a maximal subset. Definition I of [Levy58] p. 2. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
isfin1-3 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))

Proof of Theorem isfin1-3
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 porpss 6839 . . . 4 [] Po 𝒫 𝐴
2 cnvpo 5590 . . . 4 ( [] Po 𝒫 𝐴 [] Po 𝒫 𝐴)
31, 2mpbi 219 . . 3 [] Po 𝒫 𝐴
4 pwfi 8144 . . . 4 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
54biimpi 205 . . 3 (𝐴 ∈ Fin → 𝒫 𝐴 ∈ Fin)
6 frfi 8090 . . 3 (( [] Po 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ Fin) → [] Fr 𝒫 𝐴)
73, 5, 6sylancr 694 . 2 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
8 inss2 3796 . . . . . 6 (Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴
9 pwexg 4776 . . . . . 6 (𝐴𝑉 → 𝒫 𝐴 ∈ V)
10 ssexg 4732 . . . . . 6 (((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → (Fin ∩ 𝒫 𝐴) ∈ V)
118, 9, 10sylancr 694 . . . . 5 (𝐴𝑉 → (Fin ∩ 𝒫 𝐴) ∈ V)
12 0fin 8073 . . . . . . . 8 ∅ ∈ Fin
13 0elpw 4760 . . . . . . . 8 ∅ ∈ 𝒫 𝐴
14 elin 3758 . . . . . . . 8 (∅ ∈ (Fin ∩ 𝒫 𝐴) ↔ (∅ ∈ Fin ∧ ∅ ∈ 𝒫 𝐴))
1512, 13, 14mpbir2an 957 . . . . . . 7 ∅ ∈ (Fin ∩ 𝒫 𝐴)
1615ne0ii 3882 . . . . . 6 (Fin ∩ 𝒫 𝐴) ≠ ∅
17 fri 5000 . . . . . 6 ((((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) ∧ ((Fin ∩ 𝒫 𝐴) ⊆ 𝒫 𝐴 ∧ (Fin ∩ 𝒫 𝐴) ≠ ∅)) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
188, 16, 17mpanr12 717 . . . . 5 (((Fin ∩ 𝒫 𝐴) ∈ V ∧ [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
1911, 18sylan 487 . . . 4 ((𝐴𝑉 [] Fr 𝒫 𝐴) → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏)
2019ex 449 . . 3 (𝐴𝑉 → ( [] Fr 𝒫 𝐴 → ∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏))
21 inss1 3795 . . . . . 6 (Fin ∩ 𝒫 𝐴) ⊆ Fin
22 simpl 472 . . . . . 6 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝑏 ∈ (Fin ∩ 𝒫 𝐴))
2321, 22sseldi 3566 . . . . 5 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝑏 ∈ Fin)
24 ralnex 2975 . . . . . . . 8 (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏 ↔ ¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
2521sseli 3564 . . . . . . . . . . . . . 14 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ Fin)
2625adantr 480 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ∈ Fin)
27 snfi 7923 . . . . . . . . . . . . 13 {𝑑} ∈ Fin
28 unfi 8112 . . . . . . . . . . . . 13 ((𝑏 ∈ Fin ∧ {𝑑} ∈ Fin) → (𝑏 ∪ {𝑑}) ∈ Fin)
2926, 27, 28sylancl 693 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ Fin)
30 elin 3758 . . . . . . . . . . . . . . . . 17 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) ↔ (𝑏 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝐴))
3130simprbi 479 . . . . . . . . . . . . . . . 16 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏 ∈ 𝒫 𝐴)
3231elpwid 4118 . . . . . . . . . . . . . . 15 (𝑏 ∈ (Fin ∩ 𝒫 𝐴) → 𝑏𝐴)
3332adantr 480 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏𝐴)
34 snssi 4280 . . . . . . . . . . . . . . 15 (𝑑𝐴 → {𝑑} ⊆ 𝐴)
3534ad2antrl 760 . . . . . . . . . . . . . 14 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → {𝑑} ⊆ 𝐴)
3633, 35unssd 3751 . . . . . . . . . . . . 13 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ⊆ 𝐴)
37 vex 3176 . . . . . . . . . . . . . . 15 𝑏 ∈ V
38 snex 4835 . . . . . . . . . . . . . . 15 {𝑑} ∈ V
3937, 38unex 6854 . . . . . . . . . . . . . 14 (𝑏 ∪ {𝑑}) ∈ V
4039elpw 4114 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴 ↔ (𝑏 ∪ {𝑑}) ⊆ 𝐴)
4136, 40sylibr 223 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ 𝒫 𝐴)
4229, 41elind 3760 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴))
43 disjsn 4192 . . . . . . . . . . . . . . 15 ((𝑏 ∩ {𝑑}) = ∅ ↔ ¬ 𝑑𝑏)
4443biimpri 217 . . . . . . . . . . . . . 14 𝑑𝑏 → (𝑏 ∩ {𝑑}) = ∅)
45 vex 3176 . . . . . . . . . . . . . . 15 𝑑 ∈ V
4645snnz 4252 . . . . . . . . . . . . . 14 {𝑑} ≠ ∅
47 disjpss 3980 . . . . . . . . . . . . . 14 (((𝑏 ∩ {𝑑}) = ∅ ∧ {𝑑} ≠ ∅) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
4844, 46, 47sylancl 693 . . . . . . . . . . . . 13 𝑑𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
4948ad2antll 761 . . . . . . . . . . . 12 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → 𝑏 ⊊ (𝑏 ∪ {𝑑}))
5039, 37brcnv 5227 . . . . . . . . . . . . 13 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 [] (𝑏 ∪ {𝑑}))
5139brrpss 6838 . . . . . . . . . . . . 13 (𝑏 [] (𝑏 ∪ {𝑑}) ↔ 𝑏 ⊊ (𝑏 ∪ {𝑑}))
5250, 51bitri 263 . . . . . . . . . . . 12 ((𝑏 ∪ {𝑑}) [] 𝑏𝑏 ⊊ (𝑏 ∪ {𝑑}))
5349, 52sylibr 223 . . . . . . . . . . 11 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → (𝑏 ∪ {𝑑}) [] 𝑏)
54 breq1 4586 . . . . . . . . . . . 12 (𝑐 = (𝑏 ∪ {𝑑}) → (𝑐 [] 𝑏 ↔ (𝑏 ∪ {𝑑}) [] 𝑏))
5554rspcev 3282 . . . . . . . . . . 11 (((𝑏 ∪ {𝑑}) ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑏 ∪ {𝑑}) [] 𝑏) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5642, 53, 55syl2anc 691 . . . . . . . . . 10 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ (𝑑𝐴 ∧ ¬ 𝑑𝑏)) → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏)
5756expr 641 . . . . . . . . 9 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ 𝑑𝑏 → ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏))
5857con1d 138 . . . . . . . 8 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (¬ ∃𝑐 ∈ (Fin ∩ 𝒫 𝐴)𝑐 [] 𝑏𝑑𝑏))
5924, 58syl5bi 231 . . . . . . 7 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ 𝑑𝐴) → (∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝑑𝑏))
6059impancom 455 . . . . . 6 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → (𝑑𝐴𝑑𝑏))
6160ssrdv 3574 . . . . 5 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴𝑏)
62 ssfi 8065 . . . . 5 ((𝑏 ∈ Fin ∧ 𝐴𝑏) → 𝐴 ∈ Fin)
6323, 61, 62syl2anc 691 . . . 4 ((𝑏 ∈ (Fin ∩ 𝒫 𝐴) ∧ ∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏) → 𝐴 ∈ Fin)
6463rexlimiva 3010 . . 3 (∃𝑏 ∈ (Fin ∩ 𝒫 𝐴)∀𝑐 ∈ (Fin ∩ 𝒫 𝐴) ¬ 𝑐 [] 𝑏𝐴 ∈ Fin)
6520, 64syl6 34 . 2 (𝐴𝑉 → ( [] Fr 𝒫 𝐴𝐴 ∈ Fin))
667, 65impbid2 215 1 (𝐴𝑉 → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  cun 3538  cin 3539  wss 3540  wpss 3541  c0 3874  𝒫 cpw 4108  {csn 4125   class class class wbr 4583   Po wpo 4957   Fr wfr 4994  ccnv 5037   [] crpss 6834  Fincfn 7841
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845
This theorem is referenced by:  isfin1-4  9092  fin12  9118
  Copyright terms: Public domain W3C validator