MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin12 Structured version   Visualization version   GIF version

Theorem fin12 9118
Description: Weak theorem which skips Ia but has a trivial proof, needed to prove fin1a2 9120. (Contributed by Stefan O'Rear, 8-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.)
Assertion
Ref Expression
fin12 (𝐴 ∈ Fin → 𝐴 ∈ FinII)

Proof of Theorem fin12
Dummy variables 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 vex 3176 . . . . . . . 8 𝑏 ∈ V
21a1i 11 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ∈ V)
3 isfin1-3 9091 . . . . . . . . 9 (𝐴 ∈ Fin → (𝐴 ∈ Fin ↔ [] Fr 𝒫 𝐴))
43ibi 255 . . . . . . . 8 (𝐴 ∈ Fin → [] Fr 𝒫 𝐴)
54ad2antrr 758 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → [] Fr 𝒫 𝐴)
6 elpwi 4117 . . . . . . . 8 (𝑏 ∈ 𝒫 𝒫 𝐴𝑏 ⊆ 𝒫 𝐴)
76ad2antlr 759 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ⊆ 𝒫 𝐴)
8 simprl 790 . . . . . . 7 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏 ≠ ∅)
9 fri 5000 . . . . . . 7 (((𝑏 ∈ V ∧ [] Fr 𝒫 𝐴) ∧ (𝑏 ⊆ 𝒫 𝐴𝑏 ≠ ∅)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
102, 5, 7, 8, 9syl22anc 1319 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐)
11 vex 3176 . . . . . . . . . . 11 𝑑 ∈ V
12 vex 3176 . . . . . . . . . . 11 𝑐 ∈ V
1311, 12brcnv 5227 . . . . . . . . . 10 (𝑑 [] 𝑐𝑐 [] 𝑑)
1411brrpss 6838 . . . . . . . . . 10 (𝑐 [] 𝑑𝑐𝑑)
1513, 14bitri 263 . . . . . . . . 9 (𝑑 [] 𝑐𝑐𝑑)
1615notbii 309 . . . . . . . 8 𝑑 [] 𝑐 ↔ ¬ 𝑐𝑑)
1716ralbii 2963 . . . . . . 7 (∀𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∀𝑑𝑏 ¬ 𝑐𝑑)
1817rexbii 3023 . . . . . 6 (∃𝑐𝑏𝑑𝑏 ¬ 𝑑 [] 𝑐 ↔ ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
1910, 18sylib 207 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → ∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑)
20 sorpssuni 6844 . . . . . 6 ( [] Or 𝑏 → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2120ad2antll 761 . . . . 5 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → (∃𝑐𝑏𝑑𝑏 ¬ 𝑐𝑑 𝑏𝑏))
2219, 21mpbid 221 . . . 4 (((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) ∧ (𝑏 ≠ ∅ ∧ [] Or 𝑏)) → 𝑏𝑏)
2322ex 449 . . 3 ((𝐴 ∈ Fin ∧ 𝑏 ∈ 𝒫 𝒫 𝐴) → ((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
2423ralrimiva 2949 . 2 (𝐴 ∈ Fin → ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏))
25 isfin2 8999 . 2 (𝐴 ∈ Fin → (𝐴 ∈ FinII ↔ ∀𝑏 ∈ 𝒫 𝒫 𝐴((𝑏 ≠ ∅ ∧ [] Or 𝑏) → 𝑏𝑏)))
2624, 25mpbird 246 1 (𝐴 ∈ Fin → 𝐴 ∈ FinII)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  wcel 1977  wne 2780  wral 2896  wrex 2897  Vcvv 3173  wss 3540  wpss 3541  c0 3874  𝒫 cpw 4108   cuni 4372   class class class wbr 4583   Or wor 4958   Fr wfr 4994  ccnv 5037   [] crpss 6834  Fincfn 7841  FinIIcfin2 8984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-rpss 6835  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fin2 8991
This theorem is referenced by:  fin1a2s  9119  fin1a2  9120  finngch  9356
  Copyright terms: Public domain W3C validator