MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem2 Structured version   Visualization version   GIF version

Theorem ipasslem2 27071
Description: Lemma for ipassi 27080. Show the inner product associative law for nonpositive integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem2 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem2
StepHypRef Expression
1 nn0cn 11179 . . . . 5 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
21negcld 10258 . . . 4 (𝑁 ∈ ℕ0 → -𝑁 ∈ ℂ)
3 ip1i.9 . . . . . 6 𝑈 ∈ CPreHilOLD
43phnvi 27055 . . . . 5 𝑈 ∈ NrmCVec
5 ipasslem1.b . . . . 5 𝐵𝑋
6 ip1i.1 . . . . . 6 𝑋 = (BaseSet‘𝑈)
7 ip1i.7 . . . . . 6 𝑃 = (·𝑖OLD𝑈)
86, 7dipcl 26951 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
94, 5, 8mp3an13 1407 . . . 4 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
10 mulcl 9899 . . . 4 ((-𝑁 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
112, 9, 10syl2an 493 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) ∈ ℂ)
12 ip1i.4 . . . . . . 7 𝑆 = ( ·𝑠OLD𝑈)
136, 12nvscl 26865 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ -𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
144, 13mp3an1 1403 . . . . 5 ((-𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
152, 14sylan 487 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) ∈ 𝑋)
166, 7dipcl 26951 . . . . 5 ((𝑈 ∈ NrmCVec ∧ (-𝑁𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
174, 5, 16mp3an13 1407 . . . 4 ((-𝑁𝑆𝐴) ∈ 𝑋 → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
1815, 17syl 17 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) ∈ ℂ)
19 ax-1cn 9873 . . . . . . . . . . . . 13 1 ∈ ℂ
20 mulneg2 10346 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑁 · -1) = -(𝑁 · 1))
2119, 20mpan2 703 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (𝑁 · -1) = -(𝑁 · 1))
22 mulid1 9916 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → (𝑁 · 1) = 𝑁)
2322negeqd 10154 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → -(𝑁 · 1) = -𝑁)
2421, 23eqtr2d 2645 . . . . . . . . . . 11 (𝑁 ∈ ℂ → -𝑁 = (𝑁 · -1))
2524adantr 480 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → -𝑁 = (𝑁 · -1))
2625oveq1d 6564 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = ((𝑁 · -1)𝑆𝐴))
27 neg1cn 11001 . . . . . . . . . 10 -1 ∈ ℂ
286, 12nvsass 26867 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ (𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
294, 28mpan 702 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3027, 29mp3an2 1404 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → ((𝑁 · -1)𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3126, 30eqtrd 2644 . . . . . . . 8 ((𝑁 ∈ ℂ ∧ 𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
321, 31sylan 487 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁𝑆𝐴) = (𝑁𝑆(-1𝑆𝐴)))
3332oveq1d 6564 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵))
346, 12nvscl 26865 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ -1 ∈ ℂ ∧ 𝐴𝑋) → (-1𝑆𝐴) ∈ 𝑋)
354, 27, 34mp3an12 1406 . . . . . . 7 (𝐴𝑋 → (-1𝑆𝐴) ∈ 𝑋)
36 ip1i.2 . . . . . . . 8 𝐺 = ( +𝑣𝑈)
376, 36, 12, 7, 3, 5ipasslem1 27070 . . . . . . 7 ((𝑁 ∈ ℕ0 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3835, 37sylan2 490 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆(-1𝑆𝐴))𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
3933, 38eqtrd 2644 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4039oveq2d 6565 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
416, 7dipcl 26951 . . . . . . . 8 ((𝑈 ∈ NrmCVec ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
424, 5, 41mp3an13 1407 . . . . . . 7 ((-1𝑆𝐴) ∈ 𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
4335, 42syl 17 . . . . . 6 (𝐴𝑋 → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
44 mulcl 9899 . . . . . 6 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
451, 43, 44syl2an 493 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝑁 · ((-1𝑆𝐴)𝑃𝐵)) ∈ ℂ)
4611, 45negsubd 10277 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) − (𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
47 mulneg1 10345 . . . . . . 7 ((𝑁 ∈ ℂ ∧ ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
481, 43, 47syl2an 493 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((-1𝑆𝐴)𝑃𝐵)) = -(𝑁 · ((-1𝑆𝐴)𝑃𝐵)))
4948oveq2d 6565 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
502adantr 480 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → -𝑁 ∈ ℂ)
519adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
5243adantl 481 . . . . . . 7 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-1𝑆𝐴)𝑃𝐵) ∈ ℂ)
5350, 51, 52adddid 9943 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))))
546, 36, 12, 7, 3ipdiri 27069 . . . . . . . . . . 11 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋𝐵𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
555, 54mp3an3 1405 . . . . . . . . . 10 ((𝐴𝑋 ∧ (-1𝑆𝐴) ∈ 𝑋) → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
5635, 55mpdan 699 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)))
57 eqid 2610 . . . . . . . . . . . . 13 (0vec𝑈) = (0vec𝑈)
586, 36, 12, 57nvrinv 26890 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
594, 58mpan 702 . . . . . . . . . . 11 (𝐴𝑋 → (𝐴𝐺(-1𝑆𝐴)) = (0vec𝑈))
6059oveq1d 6564 . . . . . . . . . 10 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
616, 57, 7dip0l 26957 . . . . . . . . . . 11 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
624, 5, 61mp2an 704 . . . . . . . . . 10 ((0vec𝑈)𝑃𝐵) = 0
6360, 62syl6eq 2660 . . . . . . . . 9 (𝐴𝑋 → ((𝐴𝐺(-1𝑆𝐴))𝑃𝐵) = 0)
6456, 63eqtr3d 2646 . . . . . . . 8 (𝐴𝑋 → ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵)) = 0)
6564oveq2d 6565 . . . . . . 7 (𝐴𝑋 → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = (-𝑁 · 0))
662mul01d 10114 . . . . . . 7 (𝑁 ∈ ℕ0 → (-𝑁 · 0) = 0)
6765, 66sylan9eqr 2666 . . . . . 6 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · ((𝐴𝑃𝐵) + ((-1𝑆𝐴)𝑃𝐵))) = 0)
6853, 67eqtr3d 2646 . . . . 5 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + (-𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
6949, 68eqtr3d 2646 . . . 4 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) + -(𝑁 · ((-1𝑆𝐴)𝑃𝐵))) = 0)
7040, 46, 693eqtr2d 2650 . . 3 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁 · (𝐴𝑃𝐵)) − ((-𝑁𝑆𝐴)𝑃𝐵)) = 0)
7111, 18, 70subeq0d 10279 . 2 ((𝑁 ∈ ℕ0𝐴𝑋) → (-𝑁 · (𝐴𝑃𝐵)) = ((-𝑁𝑆𝐴)𝑃𝐵))
7271eqcomd 2616 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((-𝑁𝑆𝐴)𝑃𝐵) = (-𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  cmin 10145  -cneg 10146  0cn0 11169  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  ·𝑖OLDcdip 26939  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-dip 26940  df-ph 27052
This theorem is referenced by:  ipasslem3  27072
  Copyright terms: Public domain W3C validator