MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ipasslem1 Structured version   Visualization version   GIF version

Theorem ipasslem1 27070
Description: Lemma for ipassi 27080. Show the inner product associative law for nonnegative integers. (Contributed by NM, 27-Apr-2007.) (New usage is discouraged.)
Hypotheses
Ref Expression
ip1i.1 𝑋 = (BaseSet‘𝑈)
ip1i.2 𝐺 = ( +𝑣𝑈)
ip1i.4 𝑆 = ( ·𝑠OLD𝑈)
ip1i.7 𝑃 = (·𝑖OLD𝑈)
ip1i.9 𝑈 ∈ CPreHilOLD
ipasslem1.b 𝐵𝑋
Assertion
Ref Expression
ipasslem1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))

Proof of Theorem ipasslem1
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0cn 11179 . . . . . . . . . . 11 (𝑘 ∈ ℕ0𝑘 ∈ ℂ)
2 ax-1cn 9873 . . . . . . . . . . . 12 1 ∈ ℂ
3 ip1i.9 . . . . . . . . . . . . . 14 𝑈 ∈ CPreHilOLD
43phnvi 27055 . . . . . . . . . . . . 13 𝑈 ∈ NrmCVec
5 ip1i.1 . . . . . . . . . . . . . 14 𝑋 = (BaseSet‘𝑈)
6 ip1i.2 . . . . . . . . . . . . . 14 𝐺 = ( +𝑣𝑈)
7 ip1i.4 . . . . . . . . . . . . . 14 𝑆 = ( ·𝑠OLD𝑈)
85, 6, 7nvdir 26870 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ (𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋)) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
94, 8mpan 702 . . . . . . . . . . . 12 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
102, 9mp3an2 1404 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
111, 10sylan 487 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)))
125, 7nvsid 26866 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (1𝑆𝐴) = 𝐴)
134, 12mpan 702 . . . . . . . . . . . 12 (𝐴𝑋 → (1𝑆𝐴) = 𝐴)
1413adantl 481 . . . . . . . . . . 11 ((𝑘 ∈ ℕ0𝐴𝑋) → (1𝑆𝐴) = 𝐴)
1514oveq2d 6565 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘𝑆𝐴)𝐺(1𝑆𝐴)) = ((𝑘𝑆𝐴)𝐺𝐴))
1611, 15eqtrd 2644 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1)𝑆𝐴) = ((𝑘𝑆𝐴)𝐺𝐴))
1716oveq1d 6564 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
18 ipasslem1.b . . . . . . . . . . . . 13 𝐵𝑋
19 ip1i.7 . . . . . . . . . . . . . 14 𝑃 = (·𝑖OLD𝑈)
205, 19dipcl 26951 . . . . . . . . . . . . 13 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑃𝐵) ∈ ℂ)
214, 18, 20mp3an13 1407 . . . . . . . . . . . 12 (𝐴𝑋 → (𝐴𝑃𝐵) ∈ ℂ)
2221mulid2d 9937 . . . . . . . . . . 11 (𝐴𝑋 → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2322adantl 481 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (1 · (𝐴𝑃𝐵)) = (𝐴𝑃𝐵))
2423oveq2d 6565 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
255, 7nvscl 26865 . . . . . . . . . . . 12 ((𝑈 ∈ NrmCVec ∧ 𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
264, 25mp3an1 1403 . . . . . . . . . . 11 ((𝑘 ∈ ℂ ∧ 𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
271, 26sylan 487 . . . . . . . . . 10 ((𝑘 ∈ ℕ0𝐴𝑋) → (𝑘𝑆𝐴) ∈ 𝑋)
285, 6, 7, 19, 3ipdiri 27069 . . . . . . . . . . 11 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋𝐵𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
2918, 28mp3an3 1405 . . . . . . . . . 10 (((𝑘𝑆𝐴) ∈ 𝑋𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3027, 29sylancom 698 . . . . . . . . 9 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (𝐴𝑃𝐵)))
3124, 30eqtr4d 2647 . . . . . . . 8 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = (((𝑘𝑆𝐴)𝐺𝐴)𝑃𝐵))
3217, 31eqtr4d 2647 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))))
33 oveq1 6556 . . . . . . 7 (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘𝑆𝐴)𝑃𝐵) + (1 · (𝐴𝑃𝐵))) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3432, 33sylan9eq 2664 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
35 adddir 9910 . . . . . . . . 9 ((𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
362, 35mp3an2 1404 . . . . . . . 8 ((𝑘 ∈ ℂ ∧ (𝐴𝑃𝐵) ∈ ℂ) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
371, 21, 36syl2an 493 . . . . . . 7 ((𝑘 ∈ ℕ0𝐴𝑋) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3837adantr 480 . . . . . 6 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → ((𝑘 + 1) · (𝐴𝑃𝐵)) = ((𝑘 · (𝐴𝑃𝐵)) + (1 · (𝐴𝑃𝐵))))
3934, 38eqtr4d 2647 . . . . 5 (((𝑘 ∈ ℕ0𝐴𝑋) ∧ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
4039exp31 628 . . . 4 (𝑘 ∈ ℕ0 → (𝐴𝑋 → (((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)) → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
4140a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))) → (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
42 eqid 2610 . . . . . 6 (0vec𝑈) = (0vec𝑈)
435, 42, 19dip0l 26957 . . . . 5 ((𝑈 ∈ NrmCVec ∧ 𝐵𝑋) → ((0vec𝑈)𝑃𝐵) = 0)
444, 18, 43mp2an 704 . . . 4 ((0vec𝑈)𝑃𝐵) = 0
455, 7, 42nv0 26876 . . . . . 6 ((𝑈 ∈ NrmCVec ∧ 𝐴𝑋) → (0𝑆𝐴) = (0vec𝑈))
464, 45mpan 702 . . . . 5 (𝐴𝑋 → (0𝑆𝐴) = (0vec𝑈))
4746oveq1d 6564 . . . 4 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = ((0vec𝑈)𝑃𝐵))
4821mul02d 10113 . . . 4 (𝐴𝑋 → (0 · (𝐴𝑃𝐵)) = 0)
4944, 47, 483eqtr4a 2670 . . 3 (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))
50 oveq1 6556 . . . . . 6 (𝑗 = 0 → (𝑗𝑆𝐴) = (0𝑆𝐴))
5150oveq1d 6564 . . . . 5 (𝑗 = 0 → ((𝑗𝑆𝐴)𝑃𝐵) = ((0𝑆𝐴)𝑃𝐵))
52 oveq1 6556 . . . . 5 (𝑗 = 0 → (𝑗 · (𝐴𝑃𝐵)) = (0 · (𝐴𝑃𝐵)))
5351, 52eqeq12d 2625 . . . 4 (𝑗 = 0 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵))))
5453imbi2d 329 . . 3 (𝑗 = 0 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((0𝑆𝐴)𝑃𝐵) = (0 · (𝐴𝑃𝐵)))))
55 oveq1 6556 . . . . . 6 (𝑗 = 𝑘 → (𝑗𝑆𝐴) = (𝑘𝑆𝐴))
5655oveq1d 6564 . . . . 5 (𝑗 = 𝑘 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑘𝑆𝐴)𝑃𝐵))
57 oveq1 6556 . . . . 5 (𝑗 = 𝑘 → (𝑗 · (𝐴𝑃𝐵)) = (𝑘 · (𝐴𝑃𝐵)))
5856, 57eqeq12d 2625 . . . 4 (𝑗 = 𝑘 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵))))
5958imbi2d 329 . . 3 (𝑗 = 𝑘 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑘𝑆𝐴)𝑃𝐵) = (𝑘 · (𝐴𝑃𝐵)))))
60 oveq1 6556 . . . . . 6 (𝑗 = (𝑘 + 1) → (𝑗𝑆𝐴) = ((𝑘 + 1)𝑆𝐴))
6160oveq1d 6564 . . . . 5 (𝑗 = (𝑘 + 1) → ((𝑗𝑆𝐴)𝑃𝐵) = (((𝑘 + 1)𝑆𝐴)𝑃𝐵))
62 oveq1 6556 . . . . 5 (𝑗 = (𝑘 + 1) → (𝑗 · (𝐴𝑃𝐵)) = ((𝑘 + 1) · (𝐴𝑃𝐵)))
6361, 62eqeq12d 2625 . . . 4 (𝑗 = (𝑘 + 1) → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵))))
6463imbi2d 329 . . 3 (𝑗 = (𝑘 + 1) → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → (((𝑘 + 1)𝑆𝐴)𝑃𝐵) = ((𝑘 + 1) · (𝐴𝑃𝐵)))))
65 oveq1 6556 . . . . . 6 (𝑗 = 𝑁 → (𝑗𝑆𝐴) = (𝑁𝑆𝐴))
6665oveq1d 6564 . . . . 5 (𝑗 = 𝑁 → ((𝑗𝑆𝐴)𝑃𝐵) = ((𝑁𝑆𝐴)𝑃𝐵))
67 oveq1 6556 . . . . 5 (𝑗 = 𝑁 → (𝑗 · (𝐴𝑃𝐵)) = (𝑁 · (𝐴𝑃𝐵)))
6866, 67eqeq12d 2625 . . . 4 (𝑗 = 𝑁 → (((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵)) ↔ ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
6968imbi2d 329 . . 3 (𝑗 = 𝑁 → ((𝐴𝑋 → ((𝑗𝑆𝐴)𝑃𝐵) = (𝑗 · (𝐴𝑃𝐵))) ↔ (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))))
7041, 49, 54, 59, 64, 69nn0indALT 11349 . 2 (𝑁 ∈ ℕ0 → (𝐴𝑋 → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵))))
7170imp 444 1 ((𝑁 ∈ ℕ0𝐴𝑋) → ((𝑁𝑆𝐴)𝑃𝐵) = (𝑁 · (𝐴𝑃𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031   = wceq 1475  wcel 1977  cfv 5804  (class class class)co 6549  cc 9813  0cc0 9815  1c1 9816   + caddc 9818   · cmul 9820  0cn0 11169  NrmCVeccnv 26823   +𝑣 cpv 26824  BaseSetcba 26825   ·𝑠OLD cns 26826  0veccn0v 26827  ·𝑖OLDcdip 26939  CPreHilOLDccphlo 27051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-n0 11170  df-z 11255  df-uz 11564  df-rp 11709  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-grpo 26731  df-gid 26732  df-ginv 26733  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-nmcv 26839  df-dip 26940  df-ph 27052
This theorem is referenced by:  ipasslem2  27071  ipasslem3  27072  ipasslem4  27073
  Copyright terms: Public domain W3C validator