MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iocssre Structured version   Visualization version   GIF version

Theorem iocssre 12124
Description: A closed-above interval with real upper bound is a set of reals. (Contributed by FL, 29-May-2014.)
Assertion
Ref Expression
iocssre ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)

Proof of Theorem iocssre
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elioc2 12107 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) ↔ (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵)))
21biimp3a 1424 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → (𝑥 ∈ ℝ ∧ 𝐴 < 𝑥𝑥𝐵))
32simp1d 1066 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴(,]𝐵)) → 𝑥 ∈ ℝ)
433expia 1259 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝑥 ∈ (𝐴(,]𝐵) → 𝑥 ∈ ℝ))
54ssrdv 3574 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴(,]𝐵) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1031  wcel 1977  wss 3540   class class class wbr 4583  (class class class)co 6549  cr 9814  *cxr 9952   < clt 9953  cle 9954  (,]cioc 12047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-pre-lttri 9889  ax-pre-lttrn 9890
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-ioc 12051
This theorem is referenced by:  iocmnfcld  22382  lhop1  23581  negpitopissre  24090  eff1o  24099  dvlog2lem  24198  iocopn  38593  limcicciooub  38704  limcresiooub  38709  fourierdlem19  39019  fourierdlem33  39033  fourierdlem37  39037  fourierdlem46  39045  fourierdlem48  39047  fourierdlem49  39048  fourierdlem51  39050  fourierdlem63  39062  fourierdlem79  39078  fourierdlem89  39088  fourierdlem90  39089  fourierdlem91  39090  fourierdlem93  39092  fouriersw  39124
  Copyright terms: Public domain W3C validator