MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfien Structured version   Visualization version   GIF version

Theorem infpwfien 8768
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
infpwfien ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)

Proof of Theorem infpwfien
Dummy variables 𝑚 𝑛 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpidm2 8723 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝐴 × 𝐴) ≈ 𝐴)
2 infn0 8107 . . . . . . . 8 (ω ≼ 𝐴𝐴 ≠ ∅)
32adantl 481 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≠ ∅)
4 fseqen 8733 . . . . . . 7 (((𝐴 × 𝐴) ≈ 𝐴𝐴 ≠ ∅) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
51, 3, 4syl2anc 691 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴))
6 xpdom1g 7942 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ (𝐴 × 𝐴))
7 domentr 7901 . . . . . . 7 (((ω × 𝐴) ≼ (𝐴 × 𝐴) ∧ (𝐴 × 𝐴) ≈ 𝐴) → (ω × 𝐴) ≼ 𝐴)
86, 1, 7syl2anc 691 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (ω × 𝐴) ≼ 𝐴)
9 endomtr 7900 . . . . . 6 (( 𝑛 ∈ ω (𝐴𝑚 𝑛) ≈ (ω × 𝐴) ∧ (ω × 𝐴) ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴)
105, 8, 9syl2anc 691 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴)
11 numdom 8744 . . . . 5 ((𝐴 ∈ dom card ∧ 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ dom card)
1210, 11syldan 486 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ dom card)
13 eliun 4460 . . . . . . . . 9 (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↔ ∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛))
14 elmapi 7765 . . . . . . . . . . . . . . 15 (𝑥 ∈ (𝐴𝑚 𝑛) → 𝑥:𝑛𝐴)
1514ad2antll 761 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑥:𝑛𝐴)
16 frn 5966 . . . . . . . . . . . . . 14 (𝑥:𝑛𝐴 → ran 𝑥𝐴)
1715, 16syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥𝐴)
18 vex 3176 . . . . . . . . . . . . . . 15 𝑥 ∈ V
1918rnex 6992 . . . . . . . . . . . . . 14 ran 𝑥 ∈ V
2019elpw 4114 . . . . . . . . . . . . 13 (ran 𝑥 ∈ 𝒫 𝐴 ↔ ran 𝑥𝐴)
2117, 20sylibr 223 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥 ∈ 𝒫 𝐴)
22 simprl 790 . . . . . . . . . . . . . 14 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑛 ∈ ω)
23 ssid 3587 . . . . . . . . . . . . . 14 𝑛𝑛
24 ssnnfi 8064 . . . . . . . . . . . . . 14 ((𝑛 ∈ ω ∧ 𝑛𝑛) → 𝑛 ∈ Fin)
2522, 23, 24sylancl 693 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑛 ∈ Fin)
26 ffn 5958 . . . . . . . . . . . . . . 15 (𝑥:𝑛𝐴𝑥 Fn 𝑛)
27 dffn4 6034 . . . . . . . . . . . . . . 15 (𝑥 Fn 𝑛𝑥:𝑛onto→ran 𝑥)
2826, 27sylib 207 . . . . . . . . . . . . . 14 (𝑥:𝑛𝐴𝑥:𝑛onto→ran 𝑥)
2915, 28syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → 𝑥:𝑛onto→ran 𝑥)
30 fofi 8135 . . . . . . . . . . . . 13 ((𝑛 ∈ Fin ∧ 𝑥:𝑛onto→ran 𝑥) → ran 𝑥 ∈ Fin)
3125, 29, 30syl2anc 691 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥 ∈ Fin)
3221, 31elind 3760 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ (𝑛 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑛))) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
3332expr 641 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑛 ∈ ω) → (𝑥 ∈ (𝐴𝑚 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3433rexlimdva 3013 . . . . . . . . 9 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3513, 34syl5bi 231 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin)))
3635imp 444 . . . . . . 7 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)) → ran 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
37 eqid 2610 . . . . . . 7 (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) = (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥)
3836, 37fmptd 6292 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)⟶(𝒫 𝐴 ∩ Fin))
39 ffn 5958 . . . . . 6 ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)⟶(𝒫 𝐴 ∩ Fin) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴𝑚 𝑛))
4038, 39syl 17 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴𝑚 𝑛))
41 frn 5966 . . . . . . 7 ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)⟶(𝒫 𝐴 ∩ Fin) → ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ⊆ (𝒫 𝐴 ∩ Fin))
4238, 41syl 17 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ⊆ (𝒫 𝐴 ∩ Fin))
43 inss2 3796 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ Fin
44 simpr 476 . . . . . . . . . . . 12 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
4543, 44sseldi 3566 . . . . . . . . . . 11 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑦 ∈ Fin)
46 isfi 7865 . . . . . . . . . . 11 (𝑦 ∈ Fin ↔ ∃𝑚 ∈ ω 𝑦𝑚)
4745, 46sylib 207 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑚 ∈ ω 𝑦𝑚)
48 ensym 7891 . . . . . . . . . . . . 13 (𝑦𝑚𝑚𝑦)
49 bren 7850 . . . . . . . . . . . . 13 (𝑚𝑦 ↔ ∃𝑥 𝑥:𝑚1-1-onto𝑦)
5048, 49sylib 207 . . . . . . . . . . . 12 (𝑦𝑚 → ∃𝑥 𝑥:𝑚1-1-onto𝑦)
51 simprl 790 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑚 ∈ ω)
52 f1of 6050 . . . . . . . . . . . . . . . . . . . 20 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚𝑦)
5352ad2antll 761 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝑦)
54 inss1 3795 . . . . . . . . . . . . . . . . . . . . 21 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
55 simplr 788 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ (𝒫 𝐴 ∩ Fin))
5654, 55sseldi 3566 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 ∈ 𝒫 𝐴)
5756elpwid 4118 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦𝐴)
5853, 57fssd 5970 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚𝐴)
59 simplll 794 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝐴 ∈ dom card)
60 vex 3176 . . . . . . . . . . . . . . . . . . 19 𝑚 ∈ V
61 elmapg 7757 . . . . . . . . . . . . . . . . . . 19 ((𝐴 ∈ dom card ∧ 𝑚 ∈ V) → (𝑥 ∈ (𝐴𝑚 𝑚) ↔ 𝑥:𝑚𝐴))
6259, 60, 61sylancl 693 . . . . . . . . . . . . . . . . . 18 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 ∈ (𝐴𝑚 𝑚) ↔ 𝑥:𝑚𝐴))
6358, 62mpbird 246 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 ∈ (𝐴𝑚 𝑚))
64 oveq2 6557 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐴𝑚 𝑛) = (𝐴𝑚 𝑚))
6564eleq2d 2673 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑚 → (𝑥 ∈ (𝐴𝑚 𝑛) ↔ 𝑥 ∈ (𝐴𝑚 𝑚)))
6665rspcev 3282 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ ω ∧ 𝑥 ∈ (𝐴𝑚 𝑚)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛))
6751, 63, 66syl2anc 691 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ∃𝑛 ∈ ω 𝑥 ∈ (𝐴𝑚 𝑛))
6867, 13sylibr 223 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛))
69 f1ofo 6057 . . . . . . . . . . . . . . . . . 18 (𝑥:𝑚1-1-onto𝑦𝑥:𝑚onto𝑦)
7069ad2antll 761 . . . . . . . . . . . . . . . . 17 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑥:𝑚onto𝑦)
71 forn 6031 . . . . . . . . . . . . . . . . 17 (𝑥:𝑚onto𝑦 → ran 𝑥 = 𝑦)
7270, 71syl 17 . . . . . . . . . . . . . . . 16 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → ran 𝑥 = 𝑦)
7372eqcomd 2616 . . . . . . . . . . . . . . 15 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → 𝑦 = ran 𝑥)
7468, 73jca 553 . . . . . . . . . . . . . 14 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ (𝑚 ∈ ω ∧ 𝑥:𝑚1-1-onto𝑦)) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
7574expr 641 . . . . . . . . . . . . 13 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑥:𝑚1-1-onto𝑦 → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7675eximdv 1833 . . . . . . . . . . . 12 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (∃𝑥 𝑥:𝑚1-1-onto𝑦 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7750, 76syl5 33 . . . . . . . . . . 11 ((((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑚 ∈ ω) → (𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7877rexlimdva 3013 . . . . . . . . . 10 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → (∃𝑚 ∈ ω 𝑦𝑚 → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
7947, 78mpd 15 . . . . . . . . 9 (((𝐴 ∈ dom card ∧ ω ≼ 𝐴) ∧ 𝑦 ∈ (𝒫 𝐴 ∩ Fin)) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
8079ex 449 . . . . . . . 8 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥)))
81 vex 3176 . . . . . . . . . 10 𝑦 ∈ V
8237elrnmpt 5293 . . . . . . . . . 10 (𝑦 ∈ V → (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)𝑦 = ran 𝑥))
8381, 82ax-mp 5 . . . . . . . . 9 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ↔ ∃𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)𝑦 = ran 𝑥)
84 df-rex 2902 . . . . . . . . 9 (∃𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛)𝑦 = ran 𝑥 ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
8583, 84bitri 263 . . . . . . . 8 (𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) ↔ ∃𝑥(𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑦 = ran 𝑥))
8680, 85syl6ibr 241 . . . . . . 7 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑦 ∈ (𝒫 𝐴 ∩ Fin) → 𝑦 ∈ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥)))
8786ssrdv 3574 . . . . . 6 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ⊆ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥))
8842, 87eqssd 3585 . . . . 5 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin))
89 df-fo 5810 . . . . 5 ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)–onto→(𝒫 𝐴 ∩ Fin) ↔ ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) Fn 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ ran (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥) = (𝒫 𝐴 ∩ Fin)))
9040, 88, 89sylanbrc 695 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)–onto→(𝒫 𝐴 ∩ Fin))
91 fodomnum 8763 . . . 4 ( 𝑛 ∈ ω (𝐴𝑚 𝑛) ∈ dom card → ((𝑥 𝑛 ∈ ω (𝐴𝑚 𝑛) ↦ ran 𝑥): 𝑛 ∈ ω (𝐴𝑚 𝑛)–onto→(𝒫 𝐴 ∩ Fin) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛)))
9212, 90, 91sylc 63 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛))
93 domtr 7895 . . 3 (((𝒫 𝐴 ∩ Fin) ≼ 𝑛 ∈ ω (𝐴𝑚 𝑛) ∧ 𝑛 ∈ ω (𝐴𝑚 𝑛) ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
9492, 10, 93syl2anc 691 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≼ 𝐴)
95 pwexg 4776 . . . . 5 (𝐴 ∈ dom card → 𝒫 𝐴 ∈ V)
9695adantr 480 . . . 4 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝒫 𝐴 ∈ V)
97 inex1g 4729 . . . 4 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∩ Fin) ∈ V)
9896, 97syl 17 . . 3 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ∈ V)
99 infpwfidom 8734 . . 3 ((𝒫 𝐴 ∩ Fin) ∈ V → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
10098, 99syl 17 . 2 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → 𝐴 ≼ (𝒫 𝐴 ∩ Fin))
101 sbth 7965 . 2 (((𝒫 𝐴 ∩ Fin) ≼ 𝐴𝐴 ≼ (𝒫 𝐴 ∩ Fin)) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
10294, 100, 101syl2anc 691 1 ((𝐴 ∈ dom card ∧ ω ≼ 𝐴) → (𝒫 𝐴 ∩ Fin) ≈ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wne 2780  wrex 2897  Vcvv 3173  cin 3539  wss 3540  c0 3874  𝒫 cpw 4108   ciun 4455   class class class wbr 4583  cmpt 4643   × cxp 5036  dom cdm 5038  ran crn 5039   Fn wfn 5799  wf 5800  ontowfo 5802  1-1-ontowf1o 5803  (class class class)co 6549  ωcom 6957  𝑚 cmap 7744  cen 7838  cdom 7839  Fincfn 7841  cardccrd 8644
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-seqom 7430  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-acn 8651
This theorem is referenced by:  inffien  8769  isnumbasgrplem3  36694
  Copyright terms: Public domain W3C validator