MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpwfien Structured version   Unicode version

Theorem infpwfien 8333
Description: Any infinite well-orderable set is equinumerous to its set of finite subsets. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
infpwfien  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~~  A )

Proof of Theorem infpwfien
Dummy variables  m  n  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 infxpidm2 8284 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( A  X.  A
)  ~~  A )
2 infn0 7675 . . . . . . . 8  |-  ( om  ~<_  A  ->  A  =/=  (/) )
32adantl 466 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  A  =/=  (/) )
4 fseqen 8298 . . . . . . 7  |-  ( ( ( A  X.  A
)  ~~  A  /\  A  =/=  (/) )  ->  U_ n  e.  om  ( A  ^m  n )  ~~  ( om  X.  A ) )
51, 3, 4syl2anc 661 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A ) )
6 xpdom1g 7508 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( om  X.  A
)  ~<_  ( A  X.  A ) )
7 domentr 7468 . . . . . . 7  |-  ( ( ( om  X.  A
)  ~<_  ( A  X.  A )  /\  ( A  X.  A )  ~~  A )  ->  ( om  X.  A )  ~<_  A )
86, 1, 7syl2anc 661 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( om  X.  A
)  ~<_  A )
9 endomtr 7467 . . . . . 6  |-  ( (
U_ n  e.  om  ( A  ^m  n
)  ~~  ( om  X.  A )  /\  ( om  X.  A )  ~<_  A )  ->  U_ n  e. 
om  ( A  ^m  n )  ~<_  A )
105, 8, 9syl2anc 661 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  ~<_  A )
11 numdom 8309 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
U_ n  e.  om  ( A  ^m  n
)  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  e.  dom  card )
1210, 11syldan 470 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  U_ n  e.  om  ( A  ^m  n
)  e.  dom  card )
13 eliun 4273 . . . . . . . . 9  |-  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  <->  E. n  e.  om  x  e.  ( A  ^m  n ) )
14 elmapi 7334 . . . . . . . . . . . . . . 15  |-  ( x  e.  ( A  ^m  n )  ->  x : n --> A )
1514ad2antll 728 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  x :
n --> A )
16 frn 5663 . . . . . . . . . . . . . 14  |-  ( x : n --> A  ->  ran  x  C_  A )
1715, 16syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  C_  A )
18 vex 3071 . . . . . . . . . . . . . . 15  |-  x  e. 
_V
1918rnex 6612 . . . . . . . . . . . . . 14  |-  ran  x  e.  _V
2019elpw 3964 . . . . . . . . . . . . 13  |-  ( ran  x  e.  ~P A  <->  ran  x  C_  A )
2117, 20sylibr 212 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  e. 
~P A )
22 simprl 755 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  n  e.  om )
23 ssid 3473 . . . . . . . . . . . . . 14  |-  n  C_  n
24 ssnnfi 7633 . . . . . . . . . . . . . 14  |-  ( ( n  e.  om  /\  n  C_  n )  ->  n  e.  Fin )
2522, 23, 24sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  n  e.  Fin )
26 ffn 5657 . . . . . . . . . . . . . . 15  |-  ( x : n --> A  ->  x  Fn  n )
27 dffn4 5724 . . . . . . . . . . . . . . 15  |-  ( x  Fn  n  <->  x :
n -onto-> ran  x )
2826, 27sylib 196 . . . . . . . . . . . . . 14  |-  ( x : n --> A  ->  x : n -onto-> ran  x
)
2915, 28syl 16 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  x :
n -onto-> ran  x )
30 fofi 7698 . . . . . . . . . . . . 13  |-  ( ( n  e.  Fin  /\  x : n -onto-> ran  x
)  ->  ran  x  e. 
Fin )
3125, 29, 30syl2anc 661 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  e. 
Fin )
3221, 31elind 3638 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  ( n  e.  om  /\  x  e.  ( A  ^m  n ) ) )  ->  ran  x  e.  ( ~P A  i^i  Fin ) )
3332expr 615 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  n  e.  om )  ->  ( x  e.  ( A  ^m  n )  ->  ran  x  e.  ( ~P A  i^i  Fin ) ) )
3433rexlimdva 2937 . . . . . . . . 9  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( E. n  e. 
om  x  e.  ( A  ^m  n )  ->  ran  x  e.  ( ~P A  i^i  Fin ) ) )
3513, 34syl5bi 217 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  ->  ran  x  e.  ( ~P A  i^i  Fin )
) )
3635imp 429 . . . . . . 7  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  x  e.  U_ n  e. 
om  ( A  ^m  n ) )  ->  ran  x  e.  ( ~P A  i^i  Fin )
)
37 eqid 2451 . . . . . . 7  |-  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)  =  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)
3836, 37fmptd 5966 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x ) : U_ n  e.  om  ( A  ^m  n ) --> ( ~P A  i^i  Fin ) )
39 ffn 5657 . . . . . 6  |-  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) --> ( ~P A  i^i  Fin )  ->  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  Fn  U_ n  e.  om  ( A  ^m  n ) )
4038, 39syl 16 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  Fn  U_ n  e.  om  ( A  ^m  n ) )
41 frn 5663 . . . . . . 7  |-  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) --> ( ~P A  i^i  Fin )  ->  ran  ( x  e. 
U_ n  e.  om  ( A  ^m  n
)  |->  ran  x )  C_  ( ~P A  i^i  Fin ) )
4238, 41syl 16 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  C_  ( ~P A  i^i  Fin )
)
43 inss2 3669 . . . . . . . . . . . 12  |-  ( ~P A  i^i  Fin )  C_ 
Fin
44 simpr 461 . . . . . . . . . . . 12  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  ( ~P A  i^i  Fin ) )
4543, 44sseldi 3452 . . . . . . . . . . 11  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
46 isfi 7433 . . . . . . . . . . 11  |-  ( y  e.  Fin  <->  E. m  e.  om  y  ~~  m
)
4745, 46sylib 196 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  E. m  e.  om  y  ~~  m )
48 ensym 7458 . . . . . . . . . . . . 13  |-  ( y 
~~  m  ->  m  ~~  y )
49 bren 7419 . . . . . . . . . . . . 13  |-  ( m 
~~  y  <->  E. x  x : m -1-1-onto-> y )
5048, 49sylib 196 . . . . . . . . . . . 12  |-  ( y 
~~  m  ->  E. x  x : m -1-1-onto-> y )
51 simprl 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  m  e.  om )
52 f1of 5739 . . . . . . . . . . . . . . . . . . . 20  |-  ( x : m -1-1-onto-> y  ->  x : m --> y )
5352ad2antll 728 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x : m --> y )
54 inss1 3668 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ~P A  i^i  Fin )  C_ 
~P A
55 simplr 754 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  e.  ( ~P A  i^i  Fin )
)
5654, 55sseldi 3452 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  e.  ~P A
)
5756elpwid 3968 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  C_  A )
58 fss 5665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( x : m --> y  /\  y  C_  A )  ->  x : m --> A )
5953, 57, 58syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x : m --> A )
60 simplll 757 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  A  e.  dom  card )
61 vex 3071 . . . . . . . . . . . . . . . . . . 19  |-  m  e. 
_V
62 elmapg 7327 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  dom  card  /\  m  e.  _V )  ->  ( x  e.  ( A  ^m  m )  <-> 
x : m --> A ) )
6360, 61, 62sylancl 662 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
( x  e.  ( A  ^m  m )  <-> 
x : m --> A ) )
6459, 63mpbird 232 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x  e.  ( A  ^m  m ) )
65 oveq2 6198 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  m  ->  ( A  ^m  n )  =  ( A  ^m  m
) )
6665eleq2d 2521 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  m  ->  (
x  e.  ( A  ^m  n )  <->  x  e.  ( A  ^m  m
) ) )
6766rspcev 3169 . . . . . . . . . . . . . . . . 17  |-  ( ( m  e.  om  /\  x  e.  ( A  ^m  m ) )  ->  E. n  e.  om  x  e.  ( A  ^m  n ) )
6851, 64, 67syl2anc 661 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  E. n  e.  om  x  e.  ( A  ^m  n ) )
6968, 13sylibr 212 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x  e.  U_ n  e. 
om  ( A  ^m  n ) )
70 f1ofo 5746 . . . . . . . . . . . . . . . . . 18  |-  ( x : m -1-1-onto-> y  ->  x : m -onto-> y )
7170ad2antll 728 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  x : m -onto-> y )
72 forn 5721 . . . . . . . . . . . . . . . . 17  |-  ( x : m -onto-> y  ->  ran  x  =  y )
7371, 72syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  ->  ran  x  =  y )
7473eqcomd 2459 . . . . . . . . . . . . . . 15  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
y  =  ran  x
)
7569, 74jca 532 . . . . . . . . . . . . . 14  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
m  e.  om  /\  x : m -1-1-onto-> y ) )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  /\  y  =  ran  x ) )
7675expr 615 . . . . . . . . . . . . 13  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  m  e.  om )  ->  (
x : m -1-1-onto-> y  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
7776eximdv 1677 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  m  e.  om )  ->  ( E. x  x :
m
-1-1-onto-> y  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
7850, 77syl5 32 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  m  e.  om )  ->  (
y  ~~  m  ->  E. x ( x  e. 
U_ n  e.  om  ( A  ^m  n
)  /\  y  =  ran  x ) ) )
7978rexlimdva 2937 . . . . . . . . . 10  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( E. m  e.  om  y  ~~  m  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
8047, 79mpd 15 . . . . . . . . 9  |-  ( ( ( A  e.  dom  card  /\  om  ~<_  A )  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) )
8180ex 434 . . . . . . . 8  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( y  e.  ( ~P A  i^i  Fin )  ->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) ) )
82 vex 3071 . . . . . . . . . 10  |-  y  e. 
_V
8337elrnmpt 5184 . . . . . . . . . 10  |-  ( y  e.  _V  ->  (
y  e.  ran  (
x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
)  <->  E. x  e.  U_  n  e.  om  ( A  ^m  n ) y  =  ran  x ) )
8482, 83ax-mp 5 . . . . . . . . 9  |-  ( y  e.  ran  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)  <->  E. x  e.  U_  n  e.  om  ( A  ^m  n ) y  =  ran  x )
85 df-rex 2801 . . . . . . . . 9  |-  ( E. x  e.  U_  n  e.  om  ( A  ^m  n ) y  =  ran  x  <->  E. x
( x  e.  U_ n  e.  om  ( A  ^m  n )  /\  y  =  ran  x ) )
8684, 85bitri 249 . . . . . . . 8  |-  ( y  e.  ran  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
)  <->  E. x ( x  e.  U_ n  e. 
om  ( A  ^m  n )  /\  y  =  ran  x ) )
8781, 86syl6ibr 227 . . . . . . 7  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) ) )
8887ssrdv 3460 . . . . . 6  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  C_  ran  ( x  e.  U_ n  e. 
om  ( A  ^m  n )  |->  ran  x
) )
8942, 88eqssd 3471 . . . . 5  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  =  ( ~P A  i^i  Fin ) )
90 df-fo 5522 . . . . 5  |-  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) -onto-> ( ~P A  i^i  Fin )  <->  ( ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  Fn  U_ n  e.  om  ( A  ^m  n )  /\  ran  ( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x )  =  ( ~P A  i^i  Fin ) ) )
9140, 89, 90sylanbrc 664 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x ) : U_ n  e.  om  ( A  ^m  n ) -onto-> ( ~P A  i^i  Fin ) )
92 fodomnum 8328 . . . 4  |-  ( U_ n  e.  om  ( A  ^m  n )  e. 
dom  card  ->  ( (
x  e.  U_ n  e.  om  ( A  ^m  n )  |->  ran  x
) : U_ n  e.  om  ( A  ^m  n ) -onto-> ( ~P A  i^i  Fin )  ->  ( ~P A  i^i  Fin )  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
9312, 91, 92sylc 60 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~<_  U_ n  e.  om  ( A  ^m  n
) )
94 domtr 7462 . . 3  |-  ( ( ( ~P A  i^i  Fin )  ~<_  U_ n  e.  om  ( A  ^m  n
)  /\  U_ n  e. 
om  ( A  ^m  n )  ~<_  A )  ->  ( ~P A  i^i  Fin )  ~<_  A )
9593, 10, 94syl2anc 661 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~<_  A )
96 pwexg 4574 . . . . 5  |-  ( A  e.  dom  card  ->  ~P A  e.  _V )
9796adantr 465 . . . 4  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  ~P A  e.  _V )
98 inex1g 4533 . . . 4  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
9997, 98syl 16 . . 3  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  e.  _V )
100 infpwfidom 8299 . . 3  |-  ( ( ~P A  i^i  Fin )  e.  _V  ->  A  ~<_  ( ~P A  i^i  Fin ) )
10199, 100syl 16 . 2  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  ->  A  ~<_  ( ~P A  i^i  Fin ) )
102 sbth 7531 . 2  |-  ( ( ( ~P A  i^i  Fin )  ~<_  A  /\  A  ~<_  ( ~P A  i^i  Fin ) )  ->  ( ~P A  i^i  Fin )  ~~  A )
10395, 101, 102syl2anc 661 1  |-  ( ( A  e.  dom  card  /\ 
om  ~<_  A )  -> 
( ~P A  i^i  Fin )  ~~  A )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370   E.wex 1587    e. wcel 1758    =/= wne 2644   E.wrex 2796   _Vcvv 3068    i^i cin 3425    C_ wss 3426   (/)c0 3735   ~Pcpw 3958   U_ciun 4269   class class class wbr 4390    |-> cmpt 4448    X. cxp 4936   dom cdm 4938   ran crn 4939    Fn wfn 5511   -->wf 5512   -onto->wfo 5514   -1-1-onto->wf1o 5515  (class class class)co 6190   omcom 6576    ^m cmap 7314    ~~ cen 7407    ~<_ cdom 7408   Fincfn 7410   cardccrd 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-inf2 7948
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-se 4778  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-isom 5525  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-seqom 7003  df-1o 7020  df-oadd 7024  df-er 7201  df-map 7316  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-oi 7825  df-card 8210  df-acn 8213
This theorem is referenced by:  inffien  8334  isnumbasgrplem3  29599
  Copyright terms: Public domain W3C validator