Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem1 Structured version   Visualization version   GIF version

Theorem infleinflem1 38527
Description: Lemma for infleinf 38529, case 𝐵 ≠ ∅ ∧ -∞ < inf(𝐵, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem1.a (𝜑𝐴 ⊆ ℝ*)
infleinflem1.b (𝜑𝐵 ⊆ ℝ*)
infleinflem1.w (𝜑𝑊 ∈ ℝ+)
infleinflem1.x (𝜑𝑋𝐵)
infleinflem1.i (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
infleinflem1.z (𝜑𝑍𝐴)
infleinflem1.l (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
Assertion
Ref Expression
infleinflem1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))

Proof of Theorem infleinflem1
StepHypRef Expression
1 infleinflem1.a . . . 4 (𝜑𝐴 ⊆ ℝ*)
2 infxrcl 12035 . . . 4 (𝐴 ⊆ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
31, 2syl 17 . . 3 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
4 id 22 . . 3 (inf(𝐴, ℝ*, < ) ∈ ℝ* → inf(𝐴, ℝ*, < ) ∈ ℝ*)
53, 4syl 17 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ∈ ℝ*)
6 infleinflem1.z . . 3 (𝜑𝑍𝐴)
71, 6sseldd 3569 . 2 (𝜑𝑍 ∈ ℝ*)
8 infleinflem1.b . . . 4 (𝜑𝐵 ⊆ ℝ*)
9 infxrcl 12035 . . . 4 (𝐵 ⊆ ℝ* → inf(𝐵, ℝ*, < ) ∈ ℝ*)
108, 9syl 17 . . 3 (𝜑 → inf(𝐵, ℝ*, < ) ∈ ℝ*)
11 infleinflem1.w . . . 4 (𝜑𝑊 ∈ ℝ+)
12 rpxr 11716 . . . 4 (𝑊 ∈ ℝ+𝑊 ∈ ℝ*)
1311, 12syl 17 . . 3 (𝜑𝑊 ∈ ℝ*)
1410, 13xaddcld 12003 . 2 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) ∈ ℝ*)
15 infxrlb 12036 . . 3 ((𝐴 ⊆ ℝ*𝑍𝐴) → inf(𝐴, ℝ*, < ) ≤ 𝑍)
161, 6, 15syl2anc 691 . 2 (𝜑 → inf(𝐴, ℝ*, < ) ≤ 𝑍)
17 infleinflem1.x . . . . 5 (𝜑𝑋𝐵)
188sselda 3568 . . . . 5 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1917, 18mpdan 699 . . . 4 (𝜑𝑋 ∈ ℝ*)
2011rpred 11748 . . . . . 6 (𝜑𝑊 ∈ ℝ)
2120rehalfcld 11156 . . . . 5 (𝜑 → (𝑊 / 2) ∈ ℝ)
2221rexrd 9968 . . . 4 (𝜑 → (𝑊 / 2) ∈ ℝ*)
2319, 22xaddcld 12003 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ*)
24 infleinflem1.l . . 3 (𝜑𝑍 ≤ (𝑋 +𝑒 (𝑊 / 2)))
25 pnfge 11840 . . . . . . 7 ((𝑋 +𝑒 (𝑊 / 2)) ∈ ℝ* → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2623, 25syl 17 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
2726adantr 480 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ +∞)
28 oveq1 6556 . . . . . . 7 (inf(𝐵, ℝ*, < ) = +∞ → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
2928adantl 481 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 𝑊) = (+∞ +𝑒 𝑊))
30 rpre 11715 . . . . . . . . . 10 (𝑊 ∈ ℝ+𝑊 ∈ ℝ)
31 renemnf 9967 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ≠ -∞)
3230, 31syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ+𝑊 ≠ -∞)
33 xaddpnf2 11932 . . . . . . . . 9 ((𝑊 ∈ ℝ*𝑊 ≠ -∞) → (+∞ +𝑒 𝑊) = +∞)
3412, 32, 33syl2anc 691 . . . . . . . 8 (𝑊 ∈ ℝ+ → (+∞ +𝑒 𝑊) = +∞)
3511, 34syl 17 . . . . . . 7 (𝜑 → (+∞ +𝑒 𝑊) = +∞)
3635adantr 480 . . . . . 6 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (+∞ +𝑒 𝑊) = +∞)
3729, 36eqtr2d 2645 . . . . 5 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → +∞ = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
3827, 37breqtrd 4609 . . . 4 ((𝜑 ∧ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
398, 17sseldd 3569 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
4010, 22xaddcld 12003 . . . . . . 7 (𝜑 → (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) ∈ ℝ*)
41 rphalfcl 11734 . . . . . . . . 9 (𝑊 ∈ ℝ+ → (𝑊 / 2) ∈ ℝ+)
4211, 41syl 17 . . . . . . . 8 (𝜑 → (𝑊 / 2) ∈ ℝ+)
4342rpxrd 11749 . . . . . . 7 (𝜑 → (𝑊 / 2) ∈ ℝ*)
44 infleinflem1.i . . . . . . 7 (𝜑𝑋 ≤ (inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)))
4539, 40, 43, 44xleadd1d 38486 . . . . . 6 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4645adantr 480 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)))
4710adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ∈ ℝ*)
48 neqne 2790 . . . . . . . 8 (¬ inf(𝐵, ℝ*, < ) = +∞ → inf(𝐵, ℝ*, < ) ≠ +∞)
4948adantl 481 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → inf(𝐵, ℝ*, < ) ≠ +∞)
5043adantr 480 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ∈ ℝ*)
5111adantr 480 . . . . . . . 8 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → 𝑊 ∈ ℝ+)
52 rpre 11715 . . . . . . . . 9 ((𝑊 / 2) ∈ ℝ+ → (𝑊 / 2) ∈ ℝ)
53 renepnf 9966 . . . . . . . . 9 ((𝑊 / 2) ∈ ℝ → (𝑊 / 2) ≠ +∞)
5441, 52, 533syl 18 . . . . . . . 8 (𝑊 ∈ ℝ+ → (𝑊 / 2) ≠ +∞)
5551, 54syl 17 . . . . . . 7 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑊 / 2) ≠ +∞)
56 xaddass2 11952 . . . . . . 7 (((inf(𝐵, ℝ*, < ) ∈ ℝ* ∧ inf(𝐵, ℝ*, < ) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞) ∧ ((𝑊 / 2) ∈ ℝ* ∧ (𝑊 / 2) ≠ +∞)) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
5747, 49, 50, 55, 50, 55, 56syl222anc 1334 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))))
58 rehalfcl 11135 . . . . . . . . . 10 (𝑊 ∈ ℝ → (𝑊 / 2) ∈ ℝ)
5958, 58rexaddd 11939 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = ((𝑊 / 2) + (𝑊 / 2)))
60 recn 9905 . . . . . . . . . 10 (𝑊 ∈ ℝ → 𝑊 ∈ ℂ)
61 2halves 11137 . . . . . . . . . 10 (𝑊 ∈ ℂ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6260, 61syl 17 . . . . . . . . 9 (𝑊 ∈ ℝ → ((𝑊 / 2) + (𝑊 / 2)) = 𝑊)
6359, 62eqtrd 2644 . . . . . . . 8 (𝑊 ∈ ℝ → ((𝑊 / 2) +𝑒 (𝑊 / 2)) = 𝑊)
6463oveq2d 6565 . . . . . . 7 (𝑊 ∈ ℝ → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6551, 30, 643syl 18 . . . . . 6 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (inf(𝐵, ℝ*, < ) +𝑒 ((𝑊 / 2) +𝑒 (𝑊 / 2))) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6657, 65eqtrd 2644 . . . . 5 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → ((inf(𝐵, ℝ*, < ) +𝑒 (𝑊 / 2)) +𝑒 (𝑊 / 2)) = (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6746, 66breqtrd 4609 . . . 4 ((𝜑 ∧ ¬ inf(𝐵, ℝ*, < ) = +∞) → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
6838, 67pm2.61dan 828 . . 3 (𝜑 → (𝑋 +𝑒 (𝑊 / 2)) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
697, 23, 14, 24, 68xrletrd 11869 . 2 (𝜑𝑍 ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
705, 7, 14, 16, 69xrletrd 11869 1 (𝜑 → inf(𝐴, ℝ*, < ) ≤ (inf(𝐵, ℝ*, < ) +𝑒 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383   = wceq 1475  wcel 1977  wne 2780  wss 3540   class class class wbr 4583  (class class class)co 6549  infcinf 8230  cc 9813  cr 9814   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954   / cdiv 10563  2c2 10947  +crp 11708   +𝑒 cxad 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-2 10956  df-rp 11709  df-xneg 11822  df-xadd 11823
This theorem is referenced by:  infleinf  38529
  Copyright terms: Public domain W3C validator