Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  infleinflem2 Structured version   Visualization version   GIF version

Theorem infleinflem2 38528
Description: Lemma for infleinf 38529, when inf(𝐵, ℝ*, < ) = -∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
Hypotheses
Ref Expression
infleinflem2.a (𝜑𝐴 ⊆ ℝ*)
infleinflem2.b (𝜑𝐵 ⊆ ℝ*)
infleinflem2.r (𝜑𝑅 ∈ ℝ)
infleinflem2.x (𝜑𝑋𝐵)
infleinflem2.t (𝜑𝑋 < (𝑅 − 2))
infleinflem2.z (𝜑𝑍𝐴)
infleinflem2.l (𝜑𝑍 ≤ (𝑋 +𝑒 1))
Assertion
Ref Expression
infleinflem2 (𝜑𝑍 < 𝑅)

Proof of Theorem infleinflem2
StepHypRef Expression
1 infleinflem2.r . . . 4 (𝜑𝑅 ∈ ℝ)
21adantr 480 . . 3 ((𝜑𝑍 = -∞) → 𝑅 ∈ ℝ)
3 simpr 476 . . 3 ((𝜑𝑍 = -∞) → 𝑍 = -∞)
4 simpr 476 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 = -∞)
5 mnflt 11833 . . . . 5 (𝑅 ∈ ℝ → -∞ < 𝑅)
65adantr 480 . . . 4 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → -∞ < 𝑅)
74, 6eqbrtrd 4605 . . 3 ((𝑅 ∈ ℝ ∧ 𝑍 = -∞) → 𝑍 < 𝑅)
82, 3, 7syl2anc 691 . 2 ((𝜑𝑍 = -∞) → 𝑍 < 𝑅)
9 simpl 472 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝜑)
10 neqne 2790 . . . 4 𝑍 = -∞ → 𝑍 ≠ -∞)
1110adantl 481 . . 3 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 ≠ -∞)
121adantr 480 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑅 ∈ ℝ)
13 id 22 . . . . . . . 8 (𝜑𝜑)
14 infleinflem2.x . . . . . . . 8 (𝜑𝑋𝐵)
15 infleinflem2.b . . . . . . . . 9 (𝜑𝐵 ⊆ ℝ*)
1615sselda 3568 . . . . . . . 8 ((𝜑𝑋𝐵) → 𝑋 ∈ ℝ*)
1713, 14, 16syl2anc 691 . . . . . . 7 (𝜑𝑋 ∈ ℝ*)
1817adantr 480 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ*)
19 infleinflem2.z . . . . . . . . . 10 (𝜑𝑍𝐴)
20 infleinflem2.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℝ*)
2120sselda 3568 . . . . . . . . . 10 ((𝜑𝑍𝐴) → 𝑍 ∈ ℝ*)
2213, 19, 21syl2anc 691 . . . . . . . . 9 (𝜑𝑍 ∈ ℝ*)
2322adantr 480 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ*)
24 simpr 476 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ -∞)
25 pnfxr 9971 . . . . . . . . . . 11 +∞ ∈ ℝ*
2625a1i 11 . . . . . . . . . 10 (𝜑 → +∞ ∈ ℝ*)
27 peano2rem 10227 . . . . . . . . . . . . 13 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ)
2827rexrd 9968 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) ∈ ℝ*)
291, 28syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) ∈ ℝ*)
3015, 14sseldd 3569 . . . . . . . . . . . . 13 (𝜑𝑋 ∈ ℝ*)
31 id 22 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ*𝑋 ∈ ℝ*)
32 1re 9918 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
3332rexri 9976 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
3433a1i 11 . . . . . . . . . . . . . 14 (𝑋 ∈ ℝ* → 1 ∈ ℝ*)
3531, 34xaddcld 12003 . . . . . . . . . . . . 13 (𝑋 ∈ ℝ* → (𝑋 +𝑒 1) ∈ ℝ*)
3630, 35syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) ∈ ℝ*)
37 infleinflem2.l . . . . . . . . . . . 12 (𝜑𝑍 ≤ (𝑋 +𝑒 1))
38 infleinflem2.t . . . . . . . . . . . . 13 (𝜑𝑋 < (𝑅 − 2))
39 oveq1 6556 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (𝑋 +𝑒 1) = (-∞ +𝑒 1))
40 renepnf 9966 . . . . . . . . . . . . . . . . . . . . . 22 (1 ∈ ℝ → 1 ≠ +∞)
4132, 40ax-mp 5 . . . . . . . . . . . . . . . . . . . . 21 1 ≠ +∞
42 xaddmnf2 11934 . . . . . . . . . . . . . . . . . . . . 21 ((1 ∈ ℝ* ∧ 1 ≠ +∞) → (-∞ +𝑒 1) = -∞)
4333, 41, 42mp2an 704 . . . . . . . . . . . . . . . . . . . 20 (-∞ +𝑒 1) = -∞
4443a1i 11 . . . . . . . . . . . . . . . . . . 19 (𝑋 = -∞ → (-∞ +𝑒 1) = -∞)
4539, 44eqtrd 2644 . . . . . . . . . . . . . . . . . 18 (𝑋 = -∞ → (𝑋 +𝑒 1) = -∞)
4645adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
4727mnfltd 11834 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ ℝ → -∞ < (𝑅 − 1))
4847adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < (𝑅 − 1))
4946, 48eqbrtrd 4605 . . . . . . . . . . . . . . . 16 ((𝑅 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
5049adantlr 747 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
51503adantl3 1212 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
52 simpl 472 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)))
53 simpl2 1058 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ*)
54 neqne 2790 . . . . . . . . . . . . . . . . 17 𝑋 = -∞ → 𝑋 ≠ -∞)
5554adantl 481 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ -∞)
56 simp2 1055 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ*)
5725a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → +∞ ∈ ℝ*)
58 id 22 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 𝑅 ∈ ℝ)
59 2re 10967 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℝ
6059a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℝ → 2 ∈ ℝ)
6158, 60resubcld 10337 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ)
6261rexrd 9968 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) ∈ ℝ*)
63623ad2ant1 1075 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ*)
64 simp3 1056 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
6561ltpnfd 11831 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → (𝑅 − 2) < +∞)
66653ad2ant1 1075 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑅 − 2) < +∞)
6756, 63, 57, 64, 66xrlttrd 11866 . . . . . . . . . . . . . . . . . 18 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 < +∞)
6856, 57, 67xrltned 38514 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → 𝑋 ≠ +∞)
6968adantr 480 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ≠ +∞)
7053, 55, 69xrred 38522 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → 𝑋 ∈ ℝ)
71 id 22 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 𝑋 ∈ ℝ)
7271ad2antlr 759 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 ∈ ℝ)
7361ad2antrr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑅 − 2) ∈ ℝ)
74 1red 9934 . . . . . . . . . . . . . . . . . . . . 21 (𝑋 ∈ ℝ → 1 ∈ ℝ)
7572, 74syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 1 ∈ ℝ)
76 simpr 476 . . . . . . . . . . . . . . . . . . . 20 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → 𝑋 < (𝑅 − 2))
7772, 73, 75, 76ltadd1dd 10517 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < ((𝑅 − 2) + 1))
78 recn 9905 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℝ → 𝑅 ∈ ℂ)
79 id 22 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 𝑅 ∈ ℂ)
80 2cnd 10970 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 2 ∈ ℂ)
81 1cnd 9935 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 ∈ ℂ → 1 ∈ ℂ)
8279, 80, 81subsubd 10299 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = ((𝑅 − 2) + 1))
83 2m1e1 11012 . . . . . . . . . . . . . . . . . . . . . . . 24 (2 − 1) = 1
8483oveq2i 6560 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑅 − (2 − 1)) = (𝑅 − 1)
8584a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ ℂ → (𝑅 − (2 − 1)) = (𝑅 − 1))
8682, 85eqtr3d 2646 . . . . . . . . . . . . . . . . . . . . 21 (𝑅 ∈ ℂ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8778, 86syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ ℝ → ((𝑅 − 2) + 1) = (𝑅 − 1))
8887ad2antrr 758 . . . . . . . . . . . . . . . . . . 19 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑅 − 2) + 1) = (𝑅 − 1))
8977, 88breqtrd 4609 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 + 1) < (𝑅 − 1))
9071, 74rexaddd 11939 . . . . . . . . . . . . . . . . . . . 20 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) = (𝑋 + 1))
9190breq1d 4593 . . . . . . . . . . . . . . . . . . 19 (𝑋 ∈ ℝ → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9291ad2antlr 759 . . . . . . . . . . . . . . . . . 18 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → ((𝑋 +𝑒 1) < (𝑅 − 1) ↔ (𝑋 + 1) < (𝑅 − 1)))
9389, 92mpbird 246 . . . . . . . . . . . . . . . . 17 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
9493an32s 842 . . . . . . . . . . . . . . . 16 (((𝑅 ∈ ℝ ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
95943adantl2 1211 . . . . . . . . . . . . . . 15 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ 𝑋 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
9652, 70, 95syl2anc 691 . . . . . . . . . . . . . 14 (((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) ∧ ¬ 𝑋 = -∞) → (𝑋 +𝑒 1) < (𝑅 − 1))
9751, 96pm2.61dan 828 . . . . . . . . . . . . 13 ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑋 < (𝑅 − 2)) → (𝑋 +𝑒 1) < (𝑅 − 1))
981, 30, 38, 97syl3anc 1318 . . . . . . . . . . . 12 (𝜑 → (𝑋 +𝑒 1) < (𝑅 − 1))
9922, 36, 29, 37, 98xrlelttrd 11867 . . . . . . . . . . 11 (𝜑𝑍 < (𝑅 − 1))
10027ltpnfd 11831 . . . . . . . . . . . 12 (𝑅 ∈ ℝ → (𝑅 − 1) < +∞)
1011, 100syl 17 . . . . . . . . . . 11 (𝜑 → (𝑅 − 1) < +∞)
10222, 29, 26, 99, 101xrlttrd 11866 . . . . . . . . . 10 (𝜑𝑍 < +∞)
10322, 26, 102xrltned 38514 . . . . . . . . 9 (𝜑𝑍 ≠ +∞)
104103adantr 480 . . . . . . . 8 ((𝜑𝑍 ≠ -∞) → 𝑍 ≠ +∞)
10523, 24, 104xrred 38522 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ∈ ℝ)
10637adantr 480 . . . . . . 7 ((𝜑𝑍 ≠ -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
107 simpl3 1059 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → 𝑍 ≤ (𝑋 +𝑒 1))
10845adantl 481 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) = -∞)
109 mnflt 11833 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → -∞ < 𝑍)
110109adantr 480 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → -∞ < 𝑍)
111108, 110eqbrtrd 4605 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) < 𝑍)
112 mnfxr 9975 . . . . . . . . . . . . 13 -∞ ∈ ℝ*
113108, 112syl6eqel 2696 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → (𝑋 +𝑒 1) ∈ ℝ*)
114 rexr 9964 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ*)
115114adantr 480 . . . . . . . . . . . 12 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → 𝑍 ∈ ℝ*)
116113, 115xrltnled 38520 . . . . . . . . . . 11 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ((𝑋 +𝑒 1) < 𝑍 ↔ ¬ 𝑍 ≤ (𝑋 +𝑒 1)))
117111, 116mpbid 221 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
1181173ad2antl1 1216 . . . . . . . . 9 (((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) ∧ 𝑋 = -∞) → ¬ 𝑍 ≤ (𝑋 +𝑒 1))
119107, 118pm2.65da 598 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → ¬ 𝑋 = -∞)
120119neqned 2789 . . . . . . 7 ((𝑍 ∈ ℝ ∧ 𝑋 ∈ ℝ*𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ≠ -∞)
121105, 18, 106, 120syl3anc 1318 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ -∞)
1221, 17, 38, 68syl3anc 1318 . . . . . . 7 (𝜑𝑋 ≠ +∞)
123122adantr 480 . . . . . 6 ((𝜑𝑍 ≠ -∞) → 𝑋 ≠ +∞)
12418, 121, 123xrred 38522 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 ∈ ℝ)
12538adantr 480 . . . . 5 ((𝜑𝑍 ≠ -∞) → 𝑋 < (𝑅 − 2))
12612, 124, 125jca31 555 . . . 4 ((𝜑𝑍 ≠ -∞) → ((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)))
127 simplr 788 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ∈ ℝ)
128 simp-4r 803 . . . . . 6 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑋 ∈ ℝ)
12971, 74readdcld 9948 . . . . . . 7 (𝑋 ∈ ℝ → (𝑋 + 1) ∈ ℝ)
13090, 129eqeltrd 2688 . . . . . 6 (𝑋 ∈ ℝ → (𝑋 +𝑒 1) ∈ ℝ)
131128, 130syl 17 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) ∈ ℝ)
13258ad4antr 764 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑅 ∈ ℝ)
133 simpr 476 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 ≤ (𝑋 +𝑒 1))
134130ad3antlr 763 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) ∈ ℝ)
13527ad3antrrr 762 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) ∈ ℝ)
13658ad3antrrr 762 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → 𝑅 ∈ ℝ)
13793adantr 480 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < (𝑅 − 1))
138136ltm1d 10835 . . . . . . 7 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑅 − 1) < 𝑅)
139134, 135, 136, 137, 138lttrd 10077 . . . . . 6 ((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) → (𝑋 +𝑒 1) < 𝑅)
140139adantr 480 . . . . 5 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → (𝑋 +𝑒 1) < 𝑅)
141127, 131, 132, 133, 140lelttrd 10074 . . . 4 (((((𝑅 ∈ ℝ ∧ 𝑋 ∈ ℝ) ∧ 𝑋 < (𝑅 − 2)) ∧ 𝑍 ∈ ℝ) ∧ 𝑍 ≤ (𝑋 +𝑒 1)) → 𝑍 < 𝑅)
142126, 105, 106, 141syl21anc 1317 . . 3 ((𝜑𝑍 ≠ -∞) → 𝑍 < 𝑅)
1439, 11, 142syl2anc 691 . 2 ((𝜑 ∧ ¬ 𝑍 = -∞) → 𝑍 < 𝑅)
1448, 143pm2.61dan 828 1 (𝜑𝑍 < 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 195  wa 383  w3a 1031   = wceq 1475  wcel 1977  wne 2780  wss 3540   class class class wbr 4583  (class class class)co 6549  cc 9813  cr 9814  1c1 9816   + caddc 9818  +∞cpnf 9950  -∞cmnf 9951  *cxr 9952   < clt 9953  cle 9954  cmin 10145  2c2 10947   +𝑒 cxad 11820
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-po 4959  df-so 4960  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-1st 7059  df-2nd 7060  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-2 10956  df-xadd 11823
This theorem is referenced by:  infleinf  38529
  Copyright terms: Public domain W3C validator