Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhcnf Structured version   Visualization version   GIF version

Theorem hhcnf 28148
 Description: The continuous functionals of Hilbert space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhcn.1 𝐷 = (norm ∘ − )
hhcn.2 𝐽 = (MetOpen‘𝐷)
hhcn.4 𝐾 = (TopOpen‘ℂfld)
Assertion
Ref Expression
hhcnf ConFn = (𝐽 Cn 𝐾)

Proof of Theorem hhcnf
Dummy variables 𝑥 𝑤 𝑦 𝑧 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rab 2905 . 2 {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)} = {𝑡 ∣ (𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
2 df-cnfn 28090 . 2 ConFn = {𝑡 ∈ (ℂ ↑𝑚 ℋ) ∣ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)}
3 hhcn.1 . . . . . . . . . . . . . 14 𝐷 = (norm ∘ − )
43hilmetdval 27437 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑥 𝑤)))
5 normsub 27384 . . . . . . . . . . . . 13 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (norm‘(𝑥 𝑤)) = (norm‘(𝑤 𝑥)))
64, 5eqtrd 2644 . . . . . . . . . . . 12 ((𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
76adantll 746 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (𝑥𝐷𝑤) = (norm‘(𝑤 𝑥)))
87breq1d 4593 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑥𝐷𝑤) < 𝑧 ↔ (norm‘(𝑤 𝑥)) < 𝑧))
9 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (𝑡𝑥) ∈ ℂ)
10 ffvelrn 6265 . . . . . . . . . . . . . 14 ((𝑡: ℋ⟶ℂ ∧ 𝑤 ∈ ℋ) → (𝑡𝑤) ∈ ℂ)
119, 10anim12dan 878 . . . . . . . . . . . . 13 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ))
12 eqid 2610 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
1312cnmetdval 22384 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑥) − (𝑡𝑤))))
14 abssub 13914 . . . . . . . . . . . . . 14 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → (abs‘((𝑡𝑥) − (𝑡𝑤))) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1513, 14eqtrd 2644 . . . . . . . . . . . . 13 (((𝑡𝑥) ∈ ℂ ∧ (𝑡𝑤) ∈ ℂ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1611, 15syl 17 . . . . . . . . . . . 12 ((𝑡: ℋ⟶ℂ ∧ (𝑥 ∈ ℋ ∧ 𝑤 ∈ ℋ)) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1716anassrs 678 . . . . . . . . . . 11 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) = (abs‘((𝑡𝑤) − (𝑡𝑥))))
1817breq1d 4593 . . . . . . . . . 10 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦 ↔ (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))
198, 18imbi12d 333 . . . . . . . . 9 (((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝑤 ∈ ℋ) → (((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2019ralbidva 2968 . . . . . . . 8 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2120rexbidv 3034 . . . . . . 7 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∃𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2221ralbidv 2969 . . . . . 6 ((𝑡: ℋ⟶ℂ ∧ 𝑥 ∈ ℋ) → (∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2322ralbidva 2968 . . . . 5 (𝑡: ℋ⟶ℂ → (∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦) ↔ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
2423pm5.32i 667 . . . 4 ((𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
253hilxmet 27436 . . . . 5 𝐷 ∈ (∞Met‘ ℋ)
26 cnxmet 22386 . . . . 5 (abs ∘ − ) ∈ (∞Met‘ℂ)
27 hhcn.2 . . . . . 6 𝐽 = (MetOpen‘𝐷)
28 hhcn.4 . . . . . . 7 𝐾 = (TopOpen‘ℂfld)
2928cnfldtopn 22395 . . . . . 6 𝐾 = (MetOpen‘(abs ∘ − ))
3027, 29metcn 22158 . . . . 5 ((𝐷 ∈ (∞Met‘ ℋ) ∧ (abs ∘ − ) ∈ (∞Met‘ℂ)) → (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦))))
3125, 26, 30mp2an 704 . . . 4 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((𝑥𝐷𝑤) < 𝑧 → ((𝑡𝑥)(abs ∘ − )(𝑡𝑤)) < 𝑦)))
32 cnex 9896 . . . . . 6 ℂ ∈ V
33 ax-hilex 27240 . . . . . 6 ℋ ∈ V
3432, 33elmap 7772 . . . . 5 (𝑡 ∈ (ℂ ↑𝑚 ℋ) ↔ 𝑡: ℋ⟶ℂ)
3534anbi1i 727 . . . 4 ((𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)) ↔ (𝑡: ℋ⟶ℂ ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3624, 31, 353bitr4i 291 . . 3 (𝑡 ∈ (𝐽 Cn 𝐾) ↔ (𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦)))
3736abbi2i 2725 . 2 (𝐽 Cn 𝐾) = {𝑡 ∣ (𝑡 ∈ (ℂ ↑𝑚 ℋ) ∧ ∀𝑥 ∈ ℋ ∀𝑦 ∈ ℝ+𝑧 ∈ ℝ+𝑤 ∈ ℋ ((norm‘(𝑤 𝑥)) < 𝑧 → (abs‘((𝑡𝑤) − (𝑡𝑥))) < 𝑦))}
381, 2, 373eqtr4i 2642 1 ConFn = (𝐽 Cn 𝐾)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977  {cab 2596  ∀wral 2896  ∃wrex 2897  {crab 2900   class class class wbr 4583   ∘ ccom 5042  ⟶wf 5800  ‘cfv 5804  (class class class)co 6549   ↑𝑚 cmap 7744  ℂcc 9813   < clt 9953   − cmin 10145  ℝ+crp 11708  abscabs 13822  TopOpenctopn 15905  ∞Metcxmt 19552  MetOpencmopn 19557  ℂfldccnfld 19567   Cn ccn 20838   ℋchil 27160  normℎcno 27164   −ℎ cmv 27166  ConFnccnfn 27194 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893  ax-addf 9894  ax-mulf 9895  ax-hilex 27240  ax-hfvadd 27241  ax-hvcom 27242  ax-hvass 27243  ax-hv0cl 27244  ax-hvaddid 27245  ax-hfvmul 27246  ax-hvmulid 27247  ax-hvmulass 27248  ax-hvdistr1 27249  ax-hvdistr2 27250  ax-hvmul0 27251  ax-hfi 27320  ax-his1 27323  ax-his2 27324  ax-his3 27325  ax-his4 27326 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-inf 8232  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-4 10958  df-5 10959  df-6 10960  df-7 10961  df-8 10962  df-9 10963  df-n0 11170  df-z 11255  df-dec 11370  df-uz 11564  df-q 11665  df-rp 11709  df-xneg 11822  df-xadd 11823  df-xmul 11824  df-fz 12198  df-seq 12664  df-exp 12723  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-struct 15697  df-ndx 15698  df-slot 15699  df-base 15700  df-plusg 15781  df-mulr 15782  df-starv 15783  df-tset 15787  df-ple 15788  df-ds 15791  df-unif 15792  df-rest 15906  df-topn 15907  df-topgen 15927  df-psmet 19559  df-xmet 19560  df-met 19561  df-bl 19562  df-mopn 19563  df-cnfld 19568  df-top 20521  df-bases 20522  df-topon 20523  df-cn 20841  df-cnp 20842  df-grpo 26731  df-gid 26732  df-ginv 26733  df-gdiv 26734  df-ablo 26783  df-vc 26798  df-nv 26831  df-va 26834  df-ba 26835  df-sm 26836  df-0v 26837  df-vs 26838  df-nmcv 26839  df-ims 26840  df-hnorm 27209  df-hvsub 27212  df-cnfn 28090 This theorem is referenced by:  nlelchi  28304
 Copyright terms: Public domain W3C validator