Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzcl2 Structured version   Visualization version   GIF version

Theorem gsumzcl2 18134
 Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 18135, because it is not required that 𝐹 is a function (actually, the hypothesis always holds for any proper class 𝐹). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b 𝐵 = (Base‘𝐺)
gsumzcl.0 0 = (0g𝐺)
gsumzcl.z 𝑍 = (Cntz‘𝐺)
gsumzcl.g (𝜑𝐺 ∈ Mnd)
gsumzcl.a (𝜑𝐴𝑉)
gsumzcl.f (𝜑𝐹:𝐴𝐵)
gsumzcl.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzcl2.w (𝜑 → (𝐹 supp 0 ) ∈ Fin)
Assertion
Ref Expression
gsumzcl2 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)

Proof of Theorem gsumzcl2
Dummy variables 𝑓 𝑘 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.f . . . . . . 7 (𝜑𝐹:𝐴𝐵)
2 gsumzcl.a . . . . . . 7 (𝜑𝐴𝑉)
3 gsumzcl.0 . . . . . . . . 9 0 = (0g𝐺)
4 fvex 6113 . . . . . . . . 9 (0g𝐺) ∈ V
53, 4eqeltri 2684 . . . . . . . 8 0 ∈ V
65a1i 11 . . . . . . 7 (𝜑0 ∈ V)
7 ssid 3587 . . . . . . . 8 (𝐹 supp 0 ) ⊆ (𝐹 supp 0 )
87a1i 11 . . . . . . 7 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 supp 0 ))
91, 2, 6, 8gsumcllem 18132 . . . . . 6 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 𝐹 = (𝑘𝐴0 ))
109oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
11 gsumzcl.g . . . . . . 7 (𝜑𝐺 ∈ Mnd)
123gsumz 17197 . . . . . . 7 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
1311, 2, 12syl2anc 691 . . . . . 6 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
1413adantr 480 . . . . 5 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
1510, 14eqtrd 2644 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) = 0 )
16 gsumzcl.b . . . . . . 7 𝐵 = (Base‘𝐺)
1716, 3mndidcl 17131 . . . . . 6 (𝐺 ∈ Mnd → 0𝐵)
1811, 17syl 17 . . . . 5 (𝜑0𝐵)
1918adantr 480 . . . 4 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → 0𝐵)
2015, 19eqeltrd 2688 . . 3 ((𝜑 ∧ (𝐹 supp 0 ) = ∅) → (𝐺 Σg 𝐹) ∈ 𝐵)
2120ex 449 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ → (𝐺 Σg 𝐹) ∈ 𝐵))
22 eqid 2610 . . . . . . 7 (+g𝐺) = (+g𝐺)
23 gsumzcl.z . . . . . . 7 𝑍 = (Cntz‘𝐺)
2411adantr 480 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐺 ∈ Mnd)
252adantr 480 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐴𝑉)
261adantr 480 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝐹:𝐴𝐵)
27 gsumzcl.c . . . . . . . 8 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2827adantr 480 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
29 simprl 790 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (#‘(𝐹 supp 0 )) ∈ ℕ)
30 f1of1 6049 . . . . . . . . 9 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
3130ad2antll 761 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ))
32 suppssdm 7195 . . . . . . . . . 10 (𝐹 supp 0 ) ⊆ dom 𝐹
33 fdm 5964 . . . . . . . . . . 11 (𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
341, 33syl 17 . . . . . . . . . 10 (𝜑 → dom 𝐹 = 𝐴)
3532, 34syl5sseq 3616 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) ⊆ 𝐴)
3635adantr 480 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ 𝐴)
37 f1ss 6019 . . . . . . . 8 ((𝑓:(1...(#‘(𝐹 supp 0 )))–1-1→(𝐹 supp 0 ) ∧ (𝐹 supp 0 ) ⊆ 𝐴) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴)
3831, 36, 37syl2anc 691 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴)
39 f1ofo 6057 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → 𝑓:(1...(#‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ))
40 forn 6031 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
4139, 40syl 17 . . . . . . . . 9 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → ran 𝑓 = (𝐹 supp 0 ))
4241ad2antll 761 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → ran 𝑓 = (𝐹 supp 0 ))
437, 42syl5sseqr 3617 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
44 eqid 2610 . . . . . . 7 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
4516, 3, 22, 23, 24, 25, 26, 28, 29, 38, 43, 44gsumval3 18131 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 supp 0 ))))
46 nnuz 11599 . . . . . . . 8 ℕ = (ℤ‘1)
4729, 46syl6eleq 2698 . . . . . . 7 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (#‘(𝐹 supp 0 )) ∈ (ℤ‘1))
48 f1f 6014 . . . . . . . . . 10 (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1𝐴𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴)
4938, 48syl 17 . . . . . . . . 9 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → 𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴)
50 fco 5971 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(#‘(𝐹 supp 0 )))⟶𝐴) → (𝐹𝑓):(1...(#‘(𝐹 supp 0 )))⟶𝐵)
5126, 49, 50syl2anc 691 . . . . . . . 8 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐹𝑓):(1...(#‘(𝐹 supp 0 )))⟶𝐵)
5251ffvelrnda 6267 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) ∧ 𝑘 ∈ (1...(#‘(𝐹 supp 0 )))) → ((𝐹𝑓)‘𝑘) ∈ 𝐵)
5316, 22mndcl 17124 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑘𝐵𝑥𝐵) → (𝑘(+g𝐺)𝑥) ∈ 𝐵)
54533expb 1258 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑘𝐵𝑥𝐵)) → (𝑘(+g𝐺)𝑥) ∈ 𝐵)
5524, 54sylan 487 . . . . . . 7 (((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) ∧ (𝑘𝐵𝑥𝐵)) → (𝑘(+g𝐺)𝑥) ∈ 𝐵)
5647, 52, 55seqcl 12683 . . . . . 6 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (seq1((+g𝐺), (𝐹𝑓))‘(#‘(𝐹 supp 0 ))) ∈ 𝐵)
5745, 56eqeltrd 2688 . . . . 5 ((𝜑 ∧ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))) → (𝐺 Σg 𝐹) ∈ 𝐵)
5857expr 641 . . . 4 ((𝜑 ∧ (#‘(𝐹 supp 0 )) ∈ ℕ) → (𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) ∈ 𝐵))
5958exlimdv 1848 . . 3 ((𝜑 ∧ (#‘(𝐹 supp 0 )) ∈ ℕ) → (∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ) → (𝐺 Σg 𝐹) ∈ 𝐵))
6059expimpd 627 . 2 (𝜑 → (((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 )) → (𝐺 Σg 𝐹) ∈ 𝐵))
61 gsumzcl2.w . . 3 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
62 fz1f1o 14288 . . 3 ((𝐹 supp 0 ) ∈ Fin → ((𝐹 supp 0 ) = ∅ ∨ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
6361, 62syl 17 . 2 (𝜑 → ((𝐹 supp 0 ) = ∅ ∨ ((#‘(𝐹 supp 0 )) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(#‘(𝐹 supp 0 )))–1-1-onto→(𝐹 supp 0 ))))
6421, 60, 63mpjaod 395 1 (𝜑 → (𝐺 Σg 𝐹) ∈ 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   ∧ wa 383   = wceq 1475  ∃wex 1695   ∈ wcel 1977  Vcvv 3173   ⊆ wss 3540  ∅c0 3874   ↦ cmpt 4643  dom cdm 5038  ran crn 5039   ∘ ccom 5042  ⟶wf 5800  –1-1→wf1 5801  –onto→wfo 5802  –1-1-onto→wf1o 5803  ‘cfv 5804  (class class class)co 6549   supp csupp 7182  Fincfn 7841  1c1 9816  ℕcn 10897  ℤ≥cuz 11563  ...cfz 12197  seqcseq 12663  #chash 12979  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Cntzccntz 17571 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cntz 17573 This theorem is referenced by:  gsumzcl  18135  gsumcl2  18138
 Copyright terms: Public domain W3C validator