MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzcl2 Structured version   Unicode version

Theorem gsumzcl2 16706
Description: Closure of a finite group sum. This theorem has a weaker hypothesis than gsumzcl 16707, because it is not required that  F is a function (actually, the hypothesis always holds for any proper class  F). (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 1-Jun-2019.)
Hypotheses
Ref Expression
gsumzcl.b  |-  B  =  ( Base `  G
)
gsumzcl.0  |-  .0.  =  ( 0g `  G )
gsumzcl.z  |-  Z  =  (Cntz `  G )
gsumzcl.g  |-  ( ph  ->  G  e.  Mnd )
gsumzcl.a  |-  ( ph  ->  A  e.  V )
gsumzcl.f  |-  ( ph  ->  F : A --> B )
gsumzcl.c  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
gsumzcl2.w  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
Assertion
Ref Expression
gsumzcl2  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)

Proof of Theorem gsumzcl2
Dummy variables  f 
k  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzcl.f . . . . . . 7  |-  ( ph  ->  F : A --> B )
2 gsumzcl.a . . . . . . 7  |-  ( ph  ->  A  e.  V )
3 gsumzcl.0 . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
4 fvex 5874 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
53, 4eqeltri 2551 . . . . . . . 8  |-  .0.  e.  _V
65a1i 11 . . . . . . 7  |-  ( ph  ->  .0.  e.  _V )
7 ssid 3523 . . . . . . . 8  |-  ( F supp 
.0.  )  C_  ( F supp  .0.  )
87a1i 11 . . . . . . 7  |-  ( ph  ->  ( F supp  .0.  )  C_  ( F supp  .0.  )
)
91, 2, 6, 8gsumcllem 16703 . . . . . 6  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  F  =  ( k  e.  A  |->  .0.  )
)
109oveq2d 6298 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  ( G  gsumg  ( k  e.  A  |->  .0.  ) ) )
11 gsumzcl.g . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
123gsumz 15824 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  A  e.  V )  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
1311, 2, 12syl2anc 661 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
1413adantr 465 . . . . 5  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  ( k  e.  A  |->  .0.  ) )  =  .0.  )
1510, 14eqtrd 2508 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  =  .0.  )
16 gsumzcl.b . . . . . . 7  |-  B  =  ( Base `  G
)
1716, 3mndidcl 15752 . . . . . 6  |-  ( G  e.  Mnd  ->  .0.  e.  B )
1811, 17syl 16 . . . . 5  |-  ( ph  ->  .0.  e.  B )
1918adantr 465 . . . 4  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  ->  .0.  e.  B )
2015, 19eqeltrd 2555 . . 3  |-  ( (
ph  /\  ( F supp  .0.  )  =  (/) )  -> 
( G  gsumg  F )  e.  B
)
2120ex 434 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  ->  ( G  gsumg  F )  e.  B
) )
22 eqid 2467 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
23 gsumzcl.z . . . . . . 7  |-  Z  =  (Cntz `  G )
2411adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  G  e.  Mnd )
252adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  A  e.  V )
261adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  F : A
--> B )
27 gsumzcl.c . . . . . . . 8  |-  ( ph  ->  ran  F  C_  ( Z `  ran  F ) )
2827adantr 465 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  F  C_  ( Z `  ran  F
) )
29 simprl 755 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( # `  ( F supp  .0.  ) )  e.  NN )
30 f1of1 5813 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )
)
3130ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> ( F supp  .0.  ) )
32 suppssdm 6911 . . . . . . . . . 10  |-  ( F supp 
.0.  )  C_  dom  F
33 fdm 5733 . . . . . . . . . . 11  |-  ( F : A --> B  ->  dom  F  =  A )
341, 33syl 16 . . . . . . . . . 10  |-  ( ph  ->  dom  F  =  A )
3532, 34syl5sseq 3552 . . . . . . . . 9  |-  ( ph  ->  ( F supp  .0.  )  C_  A )
3635adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  A )
37 f1ss 5784 . . . . . . . 8  |-  ( ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> ( F supp  .0.  )  /\  ( F supp  .0.  )  C_  A )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A )
3831, 36, 37syl2anc 661 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-> A
)
39 f1ofo 5821 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )
)
40 forn 5796 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp  .0.  ) )
4139, 40syl 16 . . . . . . . . 9  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ran  f  =  ( F supp 
.0.  ) )
4241ad2antll 728 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ran  f  =  ( F supp  .0.  )
)
437, 42syl5sseqr 3553 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F supp  .0.  )  C_  ran  f )
44 eqid 2467 . . . . . . 7  |-  ( ( F  o.  f ) supp 
.0.  )  =  ( ( F  o.  f
) supp  .0.  )
4516, 3, 22, 23, 24, 25, 26, 28, 29, 38, 43, 44gsumval3 16702 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  =  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) ) )
46 nnuz 11113 . . . . . . . 8  |-  NN  =  ( ZZ>= `  1 )
4729, 46syl6eleq 2565 . . . . . . 7  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( # `  ( F supp  .0.  ) )  e.  ( ZZ>= `  1 )
)
48 f1f 5779 . . . . . . . . . 10  |-  ( f : ( 1 ... ( # `  ( F supp  .0.  ) ) )
-1-1-> A  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) --> A )
4938, 48syl 16 . . . . . . . . 9  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) --> A )
50 fco 5739 . . . . . . . . 9  |-  ( ( F : A --> B  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) --> A )  ->  ( F  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  ) ) ) --> B )
5126, 49, 50syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( F  o.  f ) : ( 1 ... ( # `  ( F supp  .0.  )
) ) --> B )
5251ffvelrnda 6019 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  ) ) )  /\  k  e.  ( 1 ... ( # `  ( F supp  .0.  )
) ) )  -> 
( ( F  o.  f ) `  k
)  e.  B )
5316, 22mndcl 15733 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  k  e.  B  /\  x  e.  B )  ->  ( k ( +g  `  G ) x )  e.  B )
54533expb 1197 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  ( k  e.  B  /\  x  e.  B
) )  ->  (
k ( +g  `  G
) x )  e.  B )
5524, 54sylan 471 . . . . . . 7  |-  ( ( ( ph  /\  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  f : ( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  ) ) )  /\  ( k  e.  B  /\  x  e.  B ) )  -> 
( k ( +g  `  G ) x )  e.  B )
5647, 52, 55seqcl 12091 . . . . . 6  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  (  seq 1 ( ( +g  `  G ) ,  ( F  o.  f ) ) `  ( # `  ( F supp  .0.  )
) )  e.  B
)
5745, 56eqeltrd 2555 . . . . 5  |-  ( (
ph  /\  ( ( # `
 ( F supp  .0.  ) )  e.  NN  /\  f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
)  ->  ( G  gsumg  F )  e.  B )
5857expr 615 . . . 4  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  (
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  )  ->  ( G  gsumg  F )  e.  B
) )
5958exlimdv 1700 . . 3  |-  ( (
ph  /\  ( # `  ( F supp  .0.  ) )  e.  NN )  ->  ( E. f  f :
( 1 ... ( # `
 ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp 
.0.  )  ->  ( G  gsumg  F )  e.  B
) )
6059expimpd 603 . 2  |-  ( ph  ->  ( ( ( # `  ( F supp  .0.  )
)  e.  NN  /\  E. f  f : ( 1 ... ( # `  ( F supp  .0.  )
) ) -1-1-onto-> ( F supp  .0.  )
)  ->  ( G  gsumg  F )  e.  B ) )
61 gsumzcl2.w . . 3  |-  ( ph  ->  ( F supp  .0.  )  e.  Fin )
62 fz1f1o 13491 . . 3  |-  ( ( F supp  .0.  )  e.  Fin  ->  ( ( F supp 
.0.  )  =  (/)  \/  ( ( # `  ( F supp  .0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
6361, 62syl 16 . 2  |-  ( ph  ->  ( ( F supp  .0.  )  =  (/)  \/  (
( # `  ( F supp 
.0.  ) )  e.  NN  /\  E. f 
f : ( 1 ... ( # `  ( F supp  .0.  ) ) ) -1-1-onto-> ( F supp  .0.  ) )
) )
6421, 60, 63mpjaod 381 1  |-  ( ph  ->  ( G  gsumg  F )  e.  B
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767   _Vcvv 3113    C_ wss 3476   (/)c0 3785    |-> cmpt 4505   dom cdm 4999   ran crn 5000    o. ccom 5003   -->wf 5582   -1-1->wf1 5583   -onto->wfo 5584   -1-1-onto->wf1o 5585   ` cfv 5586  (class class class)co 6282   supp csupp 6898   Fincfn 7513   1c1 9489   NNcn 10532   ZZ>=cuz 11078   ...cfz 11668    seqcseq 12071   #chash 12369   Basecbs 14486   +g cplusg 14551   0gc0g 14691    gsumg cgsu 14692   Mndcmnd 15722  Cntzccntz 16148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12072  df-hash 12370  df-0g 14693  df-gsum 14694  df-mnd 15728  df-cntz 16150
This theorem is referenced by:  gsumzcl  16707  gsumcl2  16713
  Copyright terms: Public domain W3C validator