Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fusgreghash2wsp Structured version   Visualization version   GIF version

Theorem fusgreghash2wsp 41502
 Description: In a finite k-regular graph with N vertices there are N times "k choose 2" paths with length 2, according to statement 8 in [Huneke] p. 2: "... giving n * ( k 2 ) total paths of length two.", if the direction of traversing the path is not respected. For simple paths of length 2 represented by length 3 strings, however, we have again n*k*(k-1) such paths. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 19-May-2021.)
Hypothesis
Ref Expression
fusgreghash2wsp.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
fusgreghash2wsp ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1)))))
Distinct variable groups:   𝑣,𝐺   𝑣,𝐾   𝑣,𝑉

Proof of Theorem fusgreghash2wsp
Dummy variables 𝑎 𝑠 𝑡 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fusgreghash2wsp.v . . . . . 6 𝑉 = (Vtx‘𝐺)
2 fveq1 6102 . . . . . . . . 9 (𝑠 = 𝑡 → (𝑠‘1) = (𝑡‘1))
32eqeq1d 2612 . . . . . . . 8 (𝑠 = 𝑡 → ((𝑠‘1) = 𝑎 ↔ (𝑡‘1) = 𝑎))
43cbvrabv 3172 . . . . . . 7 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎}
54mpteq2i 4669 . . . . . 6 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑡 ∈ (2 WSPathsN 𝐺) ∣ (𝑡‘1) = 𝑎})
61, 5fusgreg2wsp 41500 . . . . 5 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
76ad2antrr 758 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (2 WSPathsN 𝐺) = 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
87fveq2d 6107 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(2 WSPathsN 𝐺)) = (#‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
91fusgrvtxfi 40538 . . . . 5 (𝐺 ∈ FinUSGraph → 𝑉 ∈ Fin)
10 eqid 2610 . . . . . . . 8 (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})
1110a1i 11 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}) = (𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎}))
12 eqeq2 2621 . . . . . . . . 9 (𝑎 = 𝑦 → ((𝑠‘1) = 𝑎 ↔ (𝑠‘1) = 𝑦))
1312rabbidv 3164 . . . . . . . 8 (𝑎 = 𝑦 → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
1413adantl 481 . . . . . . 7 (((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) ∧ 𝑎 = 𝑦) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎} = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
15 simpr 476 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → 𝑦𝑉)
16 ovex 6577 . . . . . . . . 9 (2 WSPathsN 𝐺) ∈ V
1716rabex 4740 . . . . . . . 8 {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ V
1817a1i 11 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ V)
1911, 14, 15, 18fvmptd 6197 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) = {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦})
20 eqid 2610 . . . . . . . . . 10 (Vtx‘𝐺) = (Vtx‘𝐺)
2120fusgrvtxfi 40538 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → (Vtx‘𝐺) ∈ Fin)
22 wspthnfi 41126 . . . . . . . . 9 ((Vtx‘𝐺) ∈ Fin → (2 WSPathsN 𝐺) ∈ Fin)
2321, 22syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (2 WSPathsN 𝐺) ∈ Fin)
24 rabfi 8070 . . . . . . . 8 ((2 WSPathsN 𝐺) ∈ Fin → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2523, 24syl 17 . . . . . . 7 (𝐺 ∈ FinUSGraph → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2625adantr 480 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑦} ∈ Fin)
2719, 26eqeltrd 2688 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑦𝑉) → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦) ∈ Fin)
281, 52wspmdisj 41501 . . . . . 6 Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)
2928a1i 11 . . . . 5 (𝐺 ∈ FinUSGraph → Disj 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
309, 27, 29hashiun 14395 . . . 4 (𝐺 ∈ FinUSGraph → (#‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
3130ad2antrr 758 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘ 𝑦𝑉 ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
321, 5fusgreghash2wspv 41499 . . . . . . . . 9 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
33 ralim 2932 . . . . . . . . 9 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3432, 33syl 17 . . . . . . . 8 (𝐺 ∈ FinUSGraph → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3534adantr 480 . . . . . . 7 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1))))
3635imp 444 . . . . . 6 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)))
37 fveq2 6103 . . . . . . . . 9 (𝑣 = 𝑦 → ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣) = ((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦))
3837fveq2d 6107 . . . . . . . 8 (𝑣 = 𝑦 → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)))
3938eqeq1d 2612 . . . . . . 7 (𝑣 = 𝑦 → ((#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ↔ (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1))))
4039rspccva 3281 . . . . . 6 ((∀𝑣𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑣)) = (𝐾 · (𝐾 − 1)) ∧ 𝑦𝑉) → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
4136, 40sylan 487 . . . . 5 ((((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ∧ 𝑦𝑉) → (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = (𝐾 · (𝐾 − 1)))
4241sumeq2dv 14281 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = Σ𝑦𝑉 (𝐾 · (𝐾 − 1)))
439adantr 480 . . . . 5 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → 𝑉 ∈ Fin)
441vtxdgfusgr 40713 . . . . . . . 8 (𝐺 ∈ FinUSGraph → ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0)
45 r19.26 3046 . . . . . . . . . . 11 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) ↔ (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾))
46 eleq1 2676 . . . . . . . . . . . . . 14 (((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0𝐾 ∈ ℕ0))
4746biimpac 502 . . . . . . . . . . . . 13 ((((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → 𝐾 ∈ ℕ0)
4847ralimi 2936 . . . . . . . . . . . 12 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → ∀𝑣𝑉 𝐾 ∈ ℕ0)
49 r19.2z 4012 . . . . . . . . . . . . . 14 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 𝐾 ∈ ℕ0) → ∃𝑣𝑉 𝐾 ∈ ℕ0)
50 nn0cn 11179 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
51 kcnktkm1cn 10340 . . . . . . . . . . . . . . . 16 (𝐾 ∈ ℂ → (𝐾 · (𝐾 − 1)) ∈ ℂ)
5250, 51syl 17 . . . . . . . . . . . . . . 15 (𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℂ)
5352rexlimivw 3011 . . . . . . . . . . . . . 14 (∃𝑣𝑉 𝐾 ∈ ℕ0 → (𝐾 · (𝐾 − 1)) ∈ ℂ)
5449, 53syl 17 . . . . . . . . . . . . 13 ((𝑉 ≠ ∅ ∧ ∀𝑣𝑉 𝐾 ∈ ℕ0) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
5554expcom 450 . . . . . . . . . . . 12 (∀𝑣𝑉 𝐾 ∈ ℕ0 → (𝑉 ≠ ∅ → (𝐾 · (𝐾 − 1)) ∈ ℂ))
5648, 55syl 17 . . . . . . . . . . 11 (∀𝑣𝑉 (((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → (𝐾 · (𝐾 − 1)) ∈ ℂ))
5745, 56sylbir 224 . . . . . . . . . 10 ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝑉 ≠ ∅ → (𝐾 · (𝐾 − 1)) ∈ ℂ))
5857ex 449 . . . . . . . . 9 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝑉 ≠ ∅ → (𝐾 · (𝐾 − 1)) ∈ ℂ)))
5958com23 84 . . . . . . . 8 (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) ∈ ℕ0 → (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 · (𝐾 − 1)) ∈ ℂ)))
6044, 59syl 17 . . . . . . 7 (𝐺 ∈ FinUSGraph → (𝑉 ≠ ∅ → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 · (𝐾 − 1)) ∈ ℂ)))
6160imp 444 . . . . . 6 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (𝐾 · (𝐾 − 1)) ∈ ℂ))
6261imp 444 . . . . 5 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (𝐾 · (𝐾 − 1)) ∈ ℂ)
63 fsumconst 14364 . . . . 5 ((𝑉 ∈ Fin ∧ (𝐾 · (𝐾 − 1)) ∈ ℂ) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
6443, 62, 63syl2an2r 872 . . . 4 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (𝐾 · (𝐾 − 1)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
6542, 64eqtrd 2644 . . 3 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → Σ𝑦𝑉 (#‘((𝑎𝑉 ↦ {𝑠 ∈ (2 WSPathsN 𝐺) ∣ (𝑠‘1) = 𝑎})‘𝑦)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
668, 31, 653eqtrd 2648 . 2 (((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾) → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1))))
6766ex 449 1 ((𝐺 ∈ FinUSGraph ∧ 𝑉 ≠ ∅) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝐾 → (#‘(2 WSPathsN 𝐺)) = ((#‘𝑉) · (𝐾 · (𝐾 − 1)))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780  ∀wral 2896  ∃wrex 2897  {crab 2900  Vcvv 3173  ∅c0 3874  ∪ ciun 4455  Disj wdisj 4553   ↦ cmpt 4643  ‘cfv 5804  (class class class)co 6549  Fincfn 7841  ℂcc 9813  1c1 9816   · cmul 9820   − cmin 10145  2c2 10947  ℕ0cn0 11169  #chash 12979  Σcsu 14264  Vtxcvtx 25673   FinUSGraph cfusgr 40535  VtxDegcvtxdg 40681   WSPathsN cwwspthsn 41031 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-ac2 9168  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892  ax-pre-sup 9893 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-ifp 1007  df-3or 1032  df-3an 1033  df-tru 1478  df-fal 1481  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-map 7746  df-pm 7747  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-sup 8231  df-oi 8298  df-card 8648  df-ac 8822  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-div 10564  df-nn 10898  df-2 10956  df-3 10957  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-rp 11709  df-xadd 11823  df-fz 12198  df-fzo 12335  df-seq 12664  df-exp 12723  df-hash 12980  df-word 13154  df-concat 13156  df-s1 13157  df-s2 13444  df-s3 13445  df-cj 13687  df-re 13688  df-im 13689  df-sqrt 13823  df-abs 13824  df-clim 14067  df-sum 14265  df-vtx 25675  df-iedg 25676  df-uhgr 25724  df-ushgr 25725  df-upgr 25749  df-umgr 25750  df-edga 25793  df-uspgr 40380  df-usgr 40381  df-fusgr 40536  df-nbgr 40554  df-vtxdg 40682  df-1wlks 40800  df-wlks 40801  df-wlkson 40802  df-trls 40901  df-trlson 40902  df-pths 40923  df-spths 40924  df-pthson 40925  df-spthson 40926  df-wwlks 41033  df-wwlksn 41034  df-wwlksnon 41035  df-wspthsn 41036  df-wspthsnon 41037 This theorem is referenced by:  frrusgrord0  41503
 Copyright terms: Public domain W3C validator