Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  2wspmdisj Structured version   Visualization version   GIF version

Theorem 2wspmdisj 41501
Description: The sets of paths of length 2 with a given vertex in the middle are distinct for different vertices in the middle. (Contributed by Alexander van der Vekens, 11-Mar-2018.) (Revised by AV, 18-May-2021.)
Hypotheses
Ref Expression
frgrhash2wsp.v 𝑉 = (Vtx‘𝐺)
fusgreg2wsp.m 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
Assertion
Ref Expression
2wspmdisj Disj 𝑥𝑉 (𝑀𝑥)
Distinct variable groups:   𝐺,𝑎   𝑉,𝑎   𝑥,𝐺,𝑤,𝑎   𝑥,𝑉,𝑤,𝑎   𝑥,𝑀
Allowed substitution hints:   𝑀(𝑤,𝑎)

Proof of Theorem 2wspmdisj
Dummy variables 𝑦 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 orc 399 . . . . 5 (𝑥 = 𝑦 → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
21a1d 25 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
3 fusgreg2wsp.m . . . . . . . . . . . . . 14 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎})
43a1i 11 . . . . . . . . . . . . 13 ((𝑥𝑉𝑦𝑉) → 𝑀 = (𝑎𝑉 ↦ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎}))
5 eqeq2 2621 . . . . . . . . . . . . . . 15 (𝑎 = 𝑥 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑥))
65rabbidv 3164 . . . . . . . . . . . . . 14 (𝑎 = 𝑥 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥})
76adantl 481 . . . . . . . . . . . . 13 (((𝑥𝑉𝑦𝑉) ∧ 𝑎 = 𝑥) → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥})
8 simpl 472 . . . . . . . . . . . . 13 ((𝑥𝑉𝑦𝑉) → 𝑥𝑉)
9 ovex 6577 . . . . . . . . . . . . . . 15 (2 WSPathsN 𝐺) ∈ V
109rabex 4740 . . . . . . . . . . . . . 14 {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥} ∈ V
1110a1i 11 . . . . . . . . . . . . 13 ((𝑥𝑉𝑦𝑉) → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥} ∈ V)
124, 7, 8, 11fvmptd 6197 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → (𝑀𝑥) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥})
1312eleq2d 2673 . . . . . . . . . . 11 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑥) ↔ 𝑡 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥}))
14 fveq1 6102 . . . . . . . . . . . . . 14 (𝑤 = 𝑡 → (𝑤‘1) = (𝑡‘1))
1514eqeq1d 2612 . . . . . . . . . . . . 13 (𝑤 = 𝑡 → ((𝑤‘1) = 𝑥 ↔ (𝑡‘1) = 𝑥))
1615elrab 3331 . . . . . . . . . . . 12 (𝑡 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥} ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥))
17 eqeq2 2621 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑦 → ((𝑤‘1) = 𝑎 ↔ (𝑤‘1) = 𝑦))
1817rabbidv 3164 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑦 → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦})
1918adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑥𝑉𝑦𝑉) ∧ 𝑎 = 𝑦) → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑎} = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦})
20 simpr 476 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑉𝑦𝑉) → 𝑦𝑉)
219rabex 4740 . . . . . . . . . . . . . . . . . . . . 21 {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦} ∈ V
2221a1i 11 . . . . . . . . . . . . . . . . . . . 20 ((𝑥𝑉𝑦𝑉) → {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦} ∈ V)
234, 19, 20, 22fvmptd 6197 . . . . . . . . . . . . . . . . . . 19 ((𝑥𝑉𝑦𝑉) → (𝑀𝑦) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦})
2423adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → (𝑀𝑦) = {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦})
2524eleq2d 2673 . . . . . . . . . . . . . . . . 17 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → (𝑡 ∈ (𝑀𝑦) ↔ 𝑡 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦}))
2614eqeq1d 2612 . . . . . . . . . . . . . . . . . 18 (𝑤 = 𝑡 → ((𝑤‘1) = 𝑦 ↔ (𝑡‘1) = 𝑦))
2726elrab 3331 . . . . . . . . . . . . . . . . 17 (𝑡 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑦} ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦))
2825, 27syl6bb 275 . . . . . . . . . . . . . . . 16 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → (𝑡 ∈ (𝑀𝑦) ↔ (𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦)))
29 eqtr2 2630 . . . . . . . . . . . . . . . . . . 19 (((𝑡‘1) = 𝑥 ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦)
3029ex 449 . . . . . . . . . . . . . . . . . 18 ((𝑡‘1) = 𝑥 → ((𝑡‘1) = 𝑦𝑥 = 𝑦))
3130adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → ((𝑡‘1) = 𝑦𝑥 = 𝑦))
3231adantld 482 . . . . . . . . . . . . . . . 16 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑦) → 𝑥 = 𝑦))
3328, 32sylbid 229 . . . . . . . . . . . . . . 15 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → (𝑡 ∈ (𝑀𝑦) → 𝑥 = 𝑦))
3433con3d 147 . . . . . . . . . . . . . 14 (((𝑥𝑉𝑦𝑉) ∧ (𝑡‘1) = 𝑥) → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦)))
3534ex 449 . . . . . . . . . . . . 13 ((𝑥𝑉𝑦𝑉) → ((𝑡‘1) = 𝑥 → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦))))
3635adantld 482 . . . . . . . . . . . 12 ((𝑥𝑉𝑦𝑉) → ((𝑡 ∈ (2 WSPathsN 𝐺) ∧ (𝑡‘1) = 𝑥) → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦))))
3716, 36syl5bi 231 . . . . . . . . . . 11 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ {𝑤 ∈ (2 WSPathsN 𝐺) ∣ (𝑤‘1) = 𝑥} → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦))))
3813, 37sylbid 229 . . . . . . . . . 10 ((𝑥𝑉𝑦𝑉) → (𝑡 ∈ (𝑀𝑥) → (¬ 𝑥 = 𝑦 → ¬ 𝑡 ∈ (𝑀𝑦))))
3938com23 84 . . . . . . . . 9 ((𝑥𝑉𝑦𝑉) → (¬ 𝑥 = 𝑦 → (𝑡 ∈ (𝑀𝑥) → ¬ 𝑡 ∈ (𝑀𝑦))))
4039imp31 447 . . . . . . . 8 ((((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) ∧ 𝑡 ∈ (𝑀𝑥)) → ¬ 𝑡 ∈ (𝑀𝑦))
4140ralrimiva 2949 . . . . . . 7 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
42 disj 3969 . . . . . . 7 (((𝑀𝑥) ∩ (𝑀𝑦)) = ∅ ↔ ∀𝑡 ∈ (𝑀𝑥) ¬ 𝑡 ∈ (𝑀𝑦))
4341, 42sylibr 223 . . . . . 6 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
4443olcd 407 . . . . 5 (((𝑥𝑉𝑦𝑉) ∧ ¬ 𝑥 = 𝑦) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
4544expcom 450 . . . 4 𝑥 = 𝑦 → ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)))
462, 45pm2.61i 175 . . 3 ((𝑥𝑉𝑦𝑉) → (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
4746rgen2 2958 . 2 𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅)
48 fveq2 6103 . . 3 (𝑥 = 𝑦 → (𝑀𝑥) = (𝑀𝑦))
4948disjor 4567 . 2 (Disj 𝑥𝑉 (𝑀𝑥) ↔ ∀𝑥𝑉𝑦𝑉 (𝑥 = 𝑦 ∨ ((𝑀𝑥) ∩ (𝑀𝑦)) = ∅))
5047, 49mpbir 220 1 Disj 𝑥𝑉 (𝑀𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  wral 2896  {crab 2900  Vcvv 3173  cin 3539  c0 3874  Disj wdisj 4553  cmpt 4643  cfv 5804  (class class class)co 6549  1c1 9816  2c2 10947  Vtxcvtx 25673   WSPathsN cwwspthsn 41031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-sep 4709  ax-nul 4717  ax-pr 4833
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ral 2901  df-rex 2902  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-nul 3875  df-if 4037  df-sn 4126  df-pr 4128  df-op 4132  df-uni 4373  df-disj 4554  df-br 4584  df-opab 4644  df-mpt 4645  df-id 4953  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-iota 5768  df-fun 5806  df-fv 5812  df-ov 6552
This theorem is referenced by:  fusgreghash2wsp  41502
  Copyright terms: Public domain W3C validator