Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > fsuppmptdm | Structured version Visualization version GIF version |
Description: A mapping with a finite domain is finitely supported. (Contributed by AV, 7-Jun-2019.) |
Ref | Expression |
---|---|
fsuppmptdm.f | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) |
fsuppmptdm.a | ⊢ (𝜑 → 𝐴 ∈ Fin) |
fsuppmptdm.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) |
fsuppmptdm.z | ⊢ (𝜑 → 𝑍 ∈ 𝑊) |
Ref | Expression |
---|---|
fsuppmptdm | ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fsuppmptdm.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝑉) | |
2 | fsuppmptdm.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝑌) | |
3 | 1, 2 | fmptd 6292 | . 2 ⊢ (𝜑 → 𝐹:𝐴⟶𝑉) |
4 | fsuppmptdm.a | . 2 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
5 | fsuppmptdm.z | . 2 ⊢ (𝜑 → 𝑍 ∈ 𝑊) | |
6 | 3, 4, 5 | fdmfifsupp 8168 | 1 ⊢ (𝜑 → 𝐹 finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1475 ∈ wcel 1977 class class class wbr 4583 ↦ cmpt 4643 Fincfn 7841 finSupp cfsupp 8158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-8 1979 ax-9 1986 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 ax-rep 4699 ax-sep 4709 ax-nul 4717 ax-pow 4769 ax-pr 4833 ax-un 6847 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-3or 1032 df-3an 1033 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-eu 2462 df-mo 2463 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-ne 2782 df-ral 2901 df-rex 2902 df-reu 2903 df-rab 2905 df-v 3175 df-sbc 3403 df-csb 3500 df-dif 3543 df-un 3545 df-in 3547 df-ss 3554 df-pss 3556 df-nul 3875 df-if 4037 df-pw 4110 df-sn 4126 df-pr 4128 df-tp 4130 df-op 4132 df-uni 4373 df-iun 4457 df-br 4584 df-opab 4644 df-mpt 4645 df-tr 4681 df-eprel 4949 df-id 4953 df-po 4959 df-so 4960 df-fr 4997 df-we 4999 df-xp 5044 df-rel 5045 df-cnv 5046 df-co 5047 df-dm 5048 df-rn 5049 df-res 5050 df-ima 5051 df-ord 5643 df-on 5644 df-lim 5645 df-suc 5646 df-iota 5768 df-fun 5806 df-fn 5807 df-f 5808 df-f1 5809 df-fo 5810 df-f1o 5811 df-fv 5812 df-ov 6552 df-oprab 6553 df-mpt2 6554 df-om 6958 df-supp 7183 df-er 7629 df-en 7842 df-fin 7845 df-fsupp 8159 |
This theorem is referenced by: gsummptfidmadd 18148 gsummptfidmsplit 18153 gsummptfidmsplitres 18154 gsummptshft 18159 gsummptfidminv 18170 gsummptfidmsub 18173 gsumzunsnd 18178 gsummptf1o 18185 srgbinomlem3 18365 srgbinomlem4 18366 psrass1 19226 mamuass 20027 mamuvs1 20030 mamuvs2 20031 dmatmul 20122 mavmulass 20174 mdetrsca 20228 smadiadetlem3 20293 mat2pmatmul 20355 decpmatmul 20396 cpmadugsumlemB 20498 cpmadugsumlemC 20499 tsmsxplem1 21766 tsmsxplem2 21767 plypf1 23772 taylpfval 23923 lgseisenlem3 24902 lgseisenlem4 24903 gsummpt2d 29112 gsumvsca1 29113 gsumvsca2 29114 gsummptres 29115 mdetpmtr1 29217 esumpfinval 29464 aacllem 42356 |
Copyright terms: Public domain | W3C validator |