MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzunsnd Structured version   Visualization version   GIF version

Theorem gsumzunsnd 18178
Description: Append an element to a finite group sum, more general version of gsumunsnd 18180. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
gsumzunsnd.b 𝐵 = (Base‘𝐺)
gsumzunsnd.p + = (+g𝐺)
gsumzunsnd.z 𝑍 = (Cntz‘𝐺)
gsumzunsnd.f 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)
gsumzunsnd.g (𝜑𝐺 ∈ Mnd)
gsumzunsnd.a (𝜑𝐴 ∈ Fin)
gsumzunsnd.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzunsnd.x ((𝜑𝑘𝐴) → 𝑋𝐵)
gsumzunsnd.m (𝜑𝑀𝑉)
gsumzunsnd.d (𝜑 → ¬ 𝑀𝐴)
gsumzunsnd.y (𝜑𝑌𝐵)
gsumzunsnd.s ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
Assertion
Ref Expression
gsumzunsnd (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺   𝑘,𝑀   𝜑,𝑘   𝑘,𝑌
Allowed substitution hints:   + (𝑘)   𝐹(𝑘)   𝑉(𝑘)   𝑋(𝑘)   𝑍(𝑘)

Proof of Theorem gsumzunsnd
StepHypRef Expression
1 gsumzunsnd.b . . 3 𝐵 = (Base‘𝐺)
2 eqid 2610 . . 3 (0g𝐺) = (0g𝐺)
3 gsumzunsnd.p . . 3 + = (+g𝐺)
4 gsumzunsnd.z . . 3 𝑍 = (Cntz‘𝐺)
5 gsumzunsnd.g . . 3 (𝜑𝐺 ∈ Mnd)
6 gsumzunsnd.a . . . 4 (𝜑𝐴 ∈ Fin)
7 snfi 7923 . . . 4 {𝑀} ∈ Fin
8 unfi 8112 . . . 4 ((𝐴 ∈ Fin ∧ {𝑀} ∈ Fin) → (𝐴 ∪ {𝑀}) ∈ Fin)
96, 7, 8sylancl 693 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) ∈ Fin)
10 elun 3715 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝑀}) ↔ (𝑘𝐴𝑘 ∈ {𝑀}))
11 gsumzunsnd.x . . . . . 6 ((𝜑𝑘𝐴) → 𝑋𝐵)
12 elsni 4142 . . . . . . . 8 (𝑘 ∈ {𝑀} → 𝑘 = 𝑀)
13 gsumzunsnd.s . . . . . . . 8 ((𝜑𝑘 = 𝑀) → 𝑋 = 𝑌)
1412, 13sylan2 490 . . . . . . 7 ((𝜑𝑘 ∈ {𝑀}) → 𝑋 = 𝑌)
15 gsumzunsnd.y . . . . . . . 8 (𝜑𝑌𝐵)
1615adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ {𝑀}) → 𝑌𝐵)
1714, 16eqeltrd 2688 . . . . . 6 ((𝜑𝑘 ∈ {𝑀}) → 𝑋𝐵)
1811, 17jaodan 822 . . . . 5 ((𝜑 ∧ (𝑘𝐴𝑘 ∈ {𝑀})) → 𝑋𝐵)
1910, 18sylan2b 491 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
20 gsumzunsnd.f . . . 4 𝐹 = (𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋)
2119, 20fmptd 6292 . . 3 (𝜑𝐹:(𝐴 ∪ {𝑀})⟶𝐵)
22 gsumzunsnd.c . . 3 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
2311expcom 450 . . . . . . 7 (𝑘𝐴 → (𝜑𝑋𝐵))
2415adantr 480 . . . . . . . . . 10 ((𝜑𝑘 = 𝑀) → 𝑌𝐵)
2513, 24eqeltrd 2688 . . . . . . . . 9 ((𝜑𝑘 = 𝑀) → 𝑋𝐵)
2625expcom 450 . . . . . . . 8 (𝑘 = 𝑀 → (𝜑𝑋𝐵))
2712, 26syl 17 . . . . . . 7 (𝑘 ∈ {𝑀} → (𝜑𝑋𝐵))
2823, 27jaoi 393 . . . . . 6 ((𝑘𝐴𝑘 ∈ {𝑀}) → (𝜑𝑋𝐵))
2910, 28sylbi 206 . . . . 5 (𝑘 ∈ (𝐴 ∪ {𝑀}) → (𝜑𝑋𝐵))
3029impcom 445 . . . 4 ((𝜑𝑘 ∈ (𝐴 ∪ {𝑀})) → 𝑋𝐵)
31 fvex 6113 . . . . 5 (0g𝐺) ∈ V
3231a1i 11 . . . 4 (𝜑 → (0g𝐺) ∈ V)
3320, 9, 30, 32fsuppmptdm 8169 . . 3 (𝜑𝐹 finSupp (0g𝐺))
34 gsumzunsnd.d . . . 4 (𝜑 → ¬ 𝑀𝐴)
35 disjsn 4192 . . . 4 ((𝐴 ∩ {𝑀}) = ∅ ↔ ¬ 𝑀𝐴)
3634, 35sylibr 223 . . 3 (𝜑 → (𝐴 ∩ {𝑀}) = ∅)
37 eqidd 2611 . . 3 (𝜑 → (𝐴 ∪ {𝑀}) = (𝐴 ∪ {𝑀}))
381, 2, 3, 4, 5, 9, 21, 22, 33, 36, 37gsumzsplit 18150 . 2 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝐹𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))))
3920reseq1i 5313 . . . . 5 (𝐹𝐴) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴)
40 ssun1 3738 . . . . . 6 𝐴 ⊆ (𝐴 ∪ {𝑀})
41 resmpt 5369 . . . . . 6 (𝐴 ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘𝐴𝑋))
4240, 41mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ 𝐴) = (𝑘𝐴𝑋))
4339, 42syl5eq 2656 . . . 4 (𝜑 → (𝐹𝐴) = (𝑘𝐴𝑋))
4443oveq2d 6565 . . 3 (𝜑 → (𝐺 Σg (𝐹𝐴)) = (𝐺 Σg (𝑘𝐴𝑋)))
4520reseq1i 5313 . . . . 5 (𝐹 ↾ {𝑀}) = ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀})
46 ssun2 3739 . . . . . 6 {𝑀} ⊆ (𝐴 ∪ {𝑀})
47 resmpt 5369 . . . . . 6 ({𝑀} ⊆ (𝐴 ∪ {𝑀}) → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋))
4846, 47mp1i 13 . . . . 5 (𝜑 → ((𝑘 ∈ (𝐴 ∪ {𝑀}) ↦ 𝑋) ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋))
4945, 48syl5eq 2656 . . . 4 (𝜑 → (𝐹 ↾ {𝑀}) = (𝑘 ∈ {𝑀} ↦ 𝑋))
5049oveq2d 6565 . . 3 (𝜑 → (𝐺 Σg (𝐹 ↾ {𝑀})) = (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)))
5144, 50oveq12d 6567 . 2 (𝜑 → ((𝐺 Σg (𝐹𝐴)) + (𝐺 Σg (𝐹 ↾ {𝑀}))) = ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))))
52 gsumzunsnd.m . . . 4 (𝜑𝑀𝑉)
531, 5, 52, 15, 13gsumsnd 18175 . . 3 (𝜑 → (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋)) = 𝑌)
5453oveq2d 6565 . 2 (𝜑 → ((𝐺 Σg (𝑘𝐴𝑋)) + (𝐺 Σg (𝑘 ∈ {𝑀} ↦ 𝑋))) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
5538, 51, 543eqtrd 2648 1 (𝜑 → (𝐺 Σg 𝐹) = ((𝐺 Σg (𝑘𝐴𝑋)) + 𝑌))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 382  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cun 3538  cin 3539  wss 3540  c0 3874  {csn 4125  cmpt 4643  ran crn 5039  cres 5040  cfv 5804  (class class class)co 6549  Fincfn 7841  Basecbs 15695  +gcplusg 15768  0gc0g 15923   Σg cgsu 15924  Mndcmnd 17117  Cntzccntz 17571
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-inf2 8421  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-iin 4458  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-ress 15702  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mre 16069  df-mrc 16070  df-acs 16072  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-submnd 17159  df-mulg 17364  df-cntz 17573  df-cmn 18018
This theorem is referenced by:  mplcoe5  19289
  Copyright terms: Public domain W3C validator