MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummptshft Structured version   Visualization version   GIF version

Theorem gsummptshft 18159
Description: Index shift of a finite group sum over a finite set of sequential integers. (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
gsummptshft.b 𝐵 = (Base‘𝐺)
gsummptshft.z 0 = (0g𝐺)
gsummptshft.g (𝜑𝐺 ∈ CMnd)
gsummptshft.k (𝜑𝐾 ∈ ℤ)
gsummptshft.m (𝜑𝑀 ∈ ℤ)
gsummptshft.n (𝜑𝑁 ∈ ℤ)
gsummptshft.a ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
gsummptshft.c (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
Assertion
Ref Expression
gsummptshft (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑗   𝐶,𝑗   𝑗,𝑘,𝐾   𝑗,𝑀,𝑘   𝑗,𝑁,𝑘   𝜑,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑗)   𝐵(𝑘)   𝐶(𝑘)   𝐺(𝑗,𝑘)   0 (𝑗,𝑘)

Proof of Theorem gsummptshft
StepHypRef Expression
1 gsummptshft.b . . 3 𝐵 = (Base‘𝐺)
2 gsummptshft.z . . 3 0 = (0g𝐺)
3 gsummptshft.g . . 3 (𝜑𝐺 ∈ CMnd)
4 ovex 6577 . . . 4 (𝑀...𝑁) ∈ V
54a1i 11 . . 3 (𝜑 → (𝑀...𝑁) ∈ V)
6 gsummptshft.a . . . 4 ((𝜑𝑗 ∈ (𝑀...𝑁)) → 𝐴𝐵)
7 eqid 2610 . . . 4 (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)
86, 7fmptd 6292 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴):(𝑀...𝑁)⟶𝐵)
9 fzfid 12634 . . . 4 (𝜑 → (𝑀...𝑁) ∈ Fin)
10 fvex 6113 . . . . . 6 (0g𝐺) ∈ V
112, 10eqeltri 2684 . . . . 5 0 ∈ V
1211a1i 11 . . . 4 (𝜑0 ∈ V)
137, 9, 6, 12fsuppmptdm 8169 . . 3 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) finSupp 0 )
14 gsummptshft.k . . . 4 (𝜑𝐾 ∈ ℤ)
15 gsummptshft.m . . . 4 (𝜑𝑀 ∈ ℤ)
16 gsummptshft.n . . . 4 (𝜑𝑁 ∈ ℤ)
1714, 15, 16mptfzshft 14352 . . 3 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)):((𝑀 + 𝐾)...(𝑁 + 𝐾))–1-1-onto→(𝑀...𝑁))
181, 2, 3, 5, 8, 13, 17gsumf1o 18140 . 2 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))))
19 elfzelz 12213 . . . . . . . 8 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℤ)
2019zcnd 11359 . . . . . . 7 (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) → 𝑘 ∈ ℂ)
2114zcnd 11359 . . . . . . 7 (𝜑𝐾 ∈ ℂ)
22 npcan 10169 . . . . . . 7 ((𝑘 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑘𝐾) + 𝐾) = 𝑘)
2320, 21, 22syl2anr 494 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) = 𝑘)
24 simpr 476 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2523, 24eqeltrd 2688 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)))
2615, 16jca 553 . . . . . . 7 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2726adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
2819adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝑘 ∈ ℤ)
2914adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → 𝐾 ∈ ℤ)
3028, 29zsubcld 11363 . . . . . 6 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ ℤ)
31 fzaddel 12246 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((𝑘𝐾) ∈ ℤ ∧ 𝐾 ∈ ℤ)) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3227, 30, 29, 31syl12anc 1316 . . . . 5 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → ((𝑘𝐾) ∈ (𝑀...𝑁) ↔ ((𝑘𝐾) + 𝐾) ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))))
3325, 32mpbird 246 . . . 4 ((𝜑𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾))) → (𝑘𝐾) ∈ (𝑀...𝑁))
34 eqidd 2611 . . . 4 (𝜑 → (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))
35 eqidd 2611 . . . 4 (𝜑 → (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) = (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴))
36 gsummptshft.c . . . 4 (𝑗 = (𝑘𝐾) → 𝐴 = 𝐶)
3733, 34, 35, 36fmptco 6303 . . 3 (𝜑 → ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾))) = (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶))
3837oveq2d 6565 . 2 (𝜑 → (𝐺 Σg ((𝑗 ∈ (𝑀...𝑁) ↦ 𝐴) ∘ (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ (𝑘𝐾)))) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
3918, 38eqtrd 2644 1 (𝜑 → (𝐺 Σg (𝑗 ∈ (𝑀...𝑁) ↦ 𝐴)) = (𝐺 Σg (𝑘 ∈ ((𝑀 + 𝐾)...(𝑁 + 𝐾)) ↦ 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  Vcvv 3173  cmpt 4643  ccom 5042  cfv 5804  (class class class)co 6549  cc 9813   + caddc 9818  cmin 10145  cz 11254  ...cfz 12197  Basecbs 15695  0gc0g 15923   Σg cgsu 15924  CMndccmn 18016
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-cntz 17573  df-cmn 18018
This theorem is referenced by:  srgbinomlem4  18366  cpmadugsumlemF  20500
  Copyright terms: Public domain W3C validator