MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mamuvs1 Structured version   Visualization version   GIF version

Theorem mamuvs1 20030
Description: Matrix multiplication distributes over scalar multiplication on the left. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mamucl.b 𝐵 = (Base‘𝑅)
mamucl.r (𝜑𝑅 ∈ Ring)
mamudi.f 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
mamudi.m (𝜑𝑀 ∈ Fin)
mamudi.n (𝜑𝑁 ∈ Fin)
mamudi.o (𝜑𝑂 ∈ Fin)
mamuvs1.t · = (.r𝑅)
mamuvs1.x (𝜑𝑋𝐵)
mamuvs1.y (𝜑𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
mamuvs1.z (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
Assertion
Ref Expression
mamuvs1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)))

Proof of Theorem mamuvs1
Dummy variables 𝑖 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mamucl.b . . . . . 6 𝐵 = (Base‘𝑅)
2 eqid 2610 . . . . . 6 (0g𝑅) = (0g𝑅)
3 eqid 2610 . . . . . 6 (+g𝑅) = (+g𝑅)
4 mamuvs1.t . . . . . 6 · = (.r𝑅)
5 mamucl.r . . . . . . 7 (𝜑𝑅 ∈ Ring)
65adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑅 ∈ Ring)
7 mamudi.n . . . . . . 7 (𝜑𝑁 ∈ Fin)
87adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑁 ∈ Fin)
9 mamuvs1.x . . . . . . 7 (𝜑𝑋𝐵)
109adantr 480 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑋𝐵)
115ad2antrr 758 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑅 ∈ Ring)
12 mamuvs1.y . . . . . . . . . 10 (𝜑𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
13 elmapi 7765 . . . . . . . . . 10 (𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
1412, 13syl 17 . . . . . . . . 9 (𝜑𝑌:(𝑀 × 𝑁)⟶𝐵)
1514ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌:(𝑀 × 𝑁)⟶𝐵)
16 simplrl 796 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑖𝑀)
17 simpr 476 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑗𝑁)
1815, 16, 17fovrnd 6704 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖𝑌𝑗) ∈ 𝐵)
19 mamuvs1.z . . . . . . . . . 10 (𝜑𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
20 elmapi 7765 . . . . . . . . . 10 (𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
2119, 20syl 17 . . . . . . . . 9 (𝜑𝑍:(𝑁 × 𝑂)⟶𝐵)
2221ad2antrr 758 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑍:(𝑁 × 𝑂)⟶𝐵)
23 simplrr 797 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑘𝑂)
2422, 17, 23fovrnd 6704 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑗𝑍𝑘) ∈ 𝐵)
251, 4ringcl 18384 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
2611, 18, 24, 25syl3anc 1318 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ 𝐵)
27 eqid 2610 . . . . . . 7 (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))
28 ovex 6577 . . . . . . . 8 ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V
2928a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)) ∈ V)
30 fvex 6113 . . . . . . . 8 (0g𝑅) ∈ V
3130a1i 11 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (0g𝑅) ∈ V)
3227, 8, 29, 31fsuppmptdm 8169 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))) finSupp (0g𝑅))
331, 2, 3, 4, 6, 8, 10, 26, 32gsummulc2 18430 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
34 df-ov 6552 . . . . . . . . . 10 (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩)
35 simprl 790 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑖𝑀)
36 opelxpi 5072 . . . . . . . . . . . 12 ((𝑖𝑀𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
3735, 36sylan 487 . . . . . . . . . . 11 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁))
38 mamudi.m . . . . . . . . . . . . . 14 (𝜑𝑀 ∈ Fin)
39 xpfi 8116 . . . . . . . . . . . . . 14 ((𝑀 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑀 × 𝑁) ∈ Fin)
4038, 7, 39syl2anc 691 . . . . . . . . . . . . 13 (𝜑 → (𝑀 × 𝑁) ∈ Fin)
4140ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑀 × 𝑁) ∈ Fin)
429ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑋𝐵)
43 ffn 5958 . . . . . . . . . . . . . 14 (𝑌:(𝑀 × 𝑁)⟶𝐵𝑌 Fn (𝑀 × 𝑁))
4412, 13, 433syl 18 . . . . . . . . . . . . 13 (𝜑𝑌 Fn (𝑀 × 𝑁))
4544ad2antrr 758 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → 𝑌 Fn (𝑀 × 𝑁))
46 df-ov 6552 . . . . . . . . . . . . . 14 (𝑖𝑌𝑗) = (𝑌‘⟨𝑖, 𝑗⟩)
4746eqcomi 2619 . . . . . . . . . . . . 13 (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗)
4847a1i 11 . . . . . . . . . . . 12 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → (𝑌‘⟨𝑖, 𝑗⟩) = (𝑖𝑌𝑗))
4941, 42, 45, 48ofc1 6818 . . . . . . . . . . 11 ((((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) ∧ ⟨𝑖, 𝑗⟩ ∈ (𝑀 × 𝑁)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
5037, 49mpdan 699 . . . . . . . . . 10 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)‘⟨𝑖, 𝑗⟩) = (𝑋 · (𝑖𝑌𝑗)))
5134, 50syl5eq 2656 . . . . . . . . 9 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → (𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) = (𝑋 · (𝑖𝑌𝑗)))
5251oveq1d 6564 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)))
531, 4ringass 18387 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ (𝑋𝐵 ∧ (𝑖𝑌𝑗) ∈ 𝐵 ∧ (𝑗𝑍𝑘) ∈ 𝐵)) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5411, 42, 18, 24, 53syl13anc 1320 . . . . . . . 8 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑋 · (𝑖𝑌𝑗)) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5552, 54eqtrd 2644 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ 𝑗𝑁) → ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)) = (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))
5655mpteq2dva 4672 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘))) = (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
5756oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑅 Σg (𝑗𝑁 ↦ (𝑋 · ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
58 mamudi.f . . . . . . 7 𝐹 = (𝑅 maMul ⟨𝑀, 𝑁, 𝑂⟩)
5938adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑀 ∈ Fin)
60 mamudi.o . . . . . . . 8 (𝜑𝑂 ∈ Fin)
6160adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑂 ∈ Fin)
6212adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁)))
6319adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑍 ∈ (𝐵𝑚 (𝑁 × 𝑂)))
64 simprr 792 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → 𝑘𝑂)
6558, 1, 4, 6, 59, 8, 61, 62, 63, 35, 64mamufv 20012 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(𝑌𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘)))))
6665oveq2d 6565 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)) = (𝑋 · (𝑅 Σg (𝑗𝑁 ↦ ((𝑖𝑌𝑗) · (𝑗𝑍𝑘))))))
6733, 57, 663eqtr4d 2654 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
68 fconst6g 6007 . . . . . . . . 9 (𝑋𝐵 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
699, 68syl 17 . . . . . . . 8 (𝜑 → ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵)
70 fvex 6113 . . . . . . . . . 10 (Base‘𝑅) ∈ V
711, 70eqeltri 2684 . . . . . . . . 9 𝐵 ∈ V
72 elmapg 7757 . . . . . . . . 9 ((𝐵 ∈ V ∧ (𝑀 × 𝑁) ∈ Fin) → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
7371, 40, 72sylancr 694 . . . . . . . 8 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ↔ ((𝑀 × 𝑁) × {𝑋}):(𝑀 × 𝑁)⟶𝐵))
7469, 73mpbird 246 . . . . . . 7 (𝜑 → ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
751, 4ringvcl 20023 . . . . . . 7 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑁) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑁)) ∧ 𝑌 ∈ (𝐵𝑚 (𝑀 × 𝑁))) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
765, 74, 12, 75syl3anc 1318 . . . . . 6 (𝜑 → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7776adantr 480 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌) ∈ (𝐵𝑚 (𝑀 × 𝑁)))
7858, 1, 4, 6, 59, 8, 61, 77, 63, 35, 64mamufv 20012 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑅 Σg (𝑗𝑁 ↦ ((𝑖(((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝑗) · (𝑗𝑍𝑘)))))
79 df-ov 6552 . . . . 5 (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩)
80 opelxpi 5072 . . . . . . 7 ((𝑖𝑀𝑘𝑂) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
8180adantl 481 . . . . . 6 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂))
82 xpfi 8116 . . . . . . . . 9 ((𝑀 ∈ Fin ∧ 𝑂 ∈ Fin) → (𝑀 × 𝑂) ∈ Fin)
8338, 60, 82syl2anc 691 . . . . . . . 8 (𝜑 → (𝑀 × 𝑂) ∈ Fin)
8483adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑀 × 𝑂) ∈ Fin)
851, 5, 58, 38, 7, 60, 12, 19mamucl 20026 . . . . . . . . 9 (𝜑 → (𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
86 elmapi 7765 . . . . . . . . 9 ((𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
87 ffn 5958 . . . . . . . . 9 ((𝑌𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8885, 86, 873syl 18 . . . . . . . 8 (𝜑 → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
8988adantr 480 . . . . . . 7 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑌𝐹𝑍) Fn (𝑀 × 𝑂))
90 df-ov 6552 . . . . . . . . 9 (𝑖(𝑌𝐹𝑍)𝑘) = ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩)
9190eqcomi 2619 . . . . . . . 8 ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘)
9291a1i 11 . . . . . . 7 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((𝑌𝐹𝑍)‘⟨𝑖, 𝑘⟩) = (𝑖(𝑌𝐹𝑍)𝑘))
9384, 10, 89, 92ofc1 6818 . . . . . 6 (((𝜑 ∧ (𝑖𝑀𝑘𝑂)) ∧ ⟨𝑖, 𝑘⟩ ∈ (𝑀 × 𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9481, 93mpdan 699 . . . . 5 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))‘⟨𝑖, 𝑘⟩) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9579, 94syl5eq 2656 . . . 4 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘) = (𝑋 · (𝑖(𝑌𝐹𝑍)𝑘)))
9667, 78, 953eqtr4d 2654 . . 3 ((𝜑 ∧ (𝑖𝑀𝑘𝑂)) → (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))
9796ralrimivva 2954 . 2 (𝜑 → ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘))
981, 5, 58, 38, 7, 60, 76, 19mamucl 20026 . . . 4 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
99 elmapi 7765 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵)
100 ffn 5958 . . . 4 (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍):(𝑀 × 𝑂)⟶𝐵 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
10198, 99, 1003syl 18 . . 3 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂))
102 fconst6g 6007 . . . . . . 7 (𝑋𝐵 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
1039, 102syl 17 . . . . . 6 (𝜑 → ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵)
104 elmapg 7757 . . . . . . 7 ((𝐵 ∈ V ∧ (𝑀 × 𝑂) ∈ Fin) → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
10571, 83, 104sylancr 694 . . . . . 6 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ↔ ((𝑀 × 𝑂) × {𝑋}):(𝑀 × 𝑂)⟶𝐵))
106103, 105mpbird 246 . . . . 5 (𝜑 → ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
1071, 4ringvcl 20023 . . . . 5 ((𝑅 ∈ Ring ∧ ((𝑀 × 𝑂) × {𝑋}) ∈ (𝐵𝑚 (𝑀 × 𝑂)) ∧ (𝑌𝐹𝑍) ∈ (𝐵𝑚 (𝑀 × 𝑂))) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
1085, 106, 85, 107syl3anc 1318 . . . 4 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)))
109 elmapi 7765 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ∈ (𝐵𝑚 (𝑀 × 𝑂)) → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵)
110 ffn 5958 . . . 4 ((((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)):(𝑀 × 𝑂)⟶𝐵 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
111108, 109, 1103syl 18 . . 3 (𝜑 → (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂))
112 eqfnov2 6665 . . 3 ((((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) Fn (𝑀 × 𝑂) ∧ (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) Fn (𝑀 × 𝑂)) → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)))
113101, 111, 112syl2anc 691 . 2 (𝜑 → (((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)) ↔ ∀𝑖𝑀𝑘𝑂 (𝑖((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍)𝑘) = (𝑖(((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍))𝑘)))
11497, 113mpbird 246 1 (𝜑 → ((((𝑀 × 𝑁) × {𝑋}) ∘𝑓 · 𝑌)𝐹𝑍) = (((𝑀 × 𝑂) × {𝑋}) ∘𝑓 · (𝑌𝐹𝑍)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 195  wa 383   = wceq 1475  wcel 1977  wral 2896  Vcvv 3173  {csn 4125  cop 4131  cotp 4133  cmpt 4643   × cxp 5036   Fn wfn 5799  wf 5800  cfv 5804  (class class class)co 6549  𝑓 cof 6793  𝑚 cmap 7744  Fincfn 7841  Basecbs 15695  +gcplusg 15768  .rcmulr 15769  0gc0g 15923   Σg cgsu 15924  Ringcrg 18370   maMul cmmul 20008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-ot 4134  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-se 4998  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-isom 5813  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-of 6795  df-om 6958  df-1st 7059  df-2nd 7060  df-supp 7183  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-oadd 7451  df-er 7629  df-map 7746  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-fsupp 8159  df-oi 8298  df-card 8648  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-z 11255  df-uz 11564  df-fz 12198  df-fzo 12335  df-seq 12664  df-hash 12980  df-ndx 15698  df-slot 15699  df-base 15700  df-sets 15701  df-plusg 15781  df-0g 15925  df-gsum 15926  df-mgm 17065  df-sgrp 17107  df-mnd 17118  df-mhm 17158  df-grp 17248  df-minusg 17249  df-ghm 17481  df-cntz 17573  df-cmn 18018  df-abl 18019  df-mgp 18313  df-ur 18325  df-ring 18372  df-mamu 20009
This theorem is referenced by:  matassa  20069  mdetmul  20248
  Copyright terms: Public domain W3C validator