Step | Hyp | Ref
| Expression |
1 | | frgrawopreg.a |
. . . . . 6
⊢ 𝐴 = {𝑥 ∈ 𝑉 ∣ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾} |
2 | | frgrawopreg.b |
. . . . . 6
⊢ 𝐵 = (𝑉 ∖ 𝐴) |
3 | 1, 2 | frgrawopreglem1 26571 |
. . . . 5
⊢ (𝑉 FriendGrph 𝐸 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
4 | 3 | simprd 478 |
. . . 4
⊢ (𝑉 FriendGrph 𝐸 → 𝐵 ∈ V) |
5 | | hash1snb 13068 |
. . . 4
⊢ (𝐵 ∈ V → ((#‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝑉 FriendGrph 𝐸 → ((#‘𝐵) = 1 ↔ ∃𝑣 𝐵 = {𝑣})) |
7 | | exsnrex 4168 |
. . . . 5
⊢
(∃𝑣 𝐵 = {𝑣} ↔ ∃𝑣 ∈ 𝐵 𝐵 = {𝑣}) |
8 | | difss 3699 |
. . . . . . . 8
⊢ (𝑉 ∖ 𝐴) ⊆ 𝑉 |
9 | 2, 8 | eqsstri 3598 |
. . . . . . 7
⊢ 𝐵 ⊆ 𝑉 |
10 | | ssrexv 3630 |
. . . . . . 7
⊢ (𝐵 ⊆ 𝑉 → (∃𝑣 ∈ 𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣})) |
11 | 9, 10 | ax-mp 5 |
. . . . . 6
⊢
(∃𝑣 ∈
𝐵 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 𝐵 = {𝑣}) |
12 | 1, 2 | frgrawopreglem4 26574 |
. . . . . . . 8
⊢ (𝑉 FriendGrph 𝐸 → ∀𝑤 ∈ 𝐴 ∀𝑢 ∈ 𝐵 {𝑤, 𝑢} ∈ ran 𝐸) |
13 | | ralcom 3079 |
. . . . . . . . 9
⊢
(∀𝑤 ∈
𝐴 ∀𝑢 ∈ 𝐵 {𝑤, 𝑢} ∈ ran 𝐸 ↔ ∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ ran 𝐸) |
14 | | vsnid 4156 |
. . . . . . . . . . . 12
⊢ 𝑣 ∈ {𝑣} |
15 | | eleq2 2677 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑣} → (𝑣 ∈ 𝐵 ↔ 𝑣 ∈ {𝑣})) |
16 | 14, 15 | mpbiri 247 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑣} → 𝑣 ∈ 𝐵) |
17 | | preq2 4213 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 𝑣 → {𝑤, 𝑢} = {𝑤, 𝑣}) |
18 | 17 | eleq1d 2672 |
. . . . . . . . . . . . 13
⊢ (𝑢 = 𝑣 → ({𝑤, 𝑢} ∈ ran 𝐸 ↔ {𝑤, 𝑣} ∈ ran 𝐸)) |
19 | 18 | ralbidv 2969 |
. . . . . . . . . . . 12
⊢ (𝑢 = 𝑣 → (∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ ran 𝐸 ↔ ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ ran 𝐸)) |
20 | 19 | rspcv 3278 |
. . . . . . . . . . 11
⊢ (𝑣 ∈ 𝐵 → (∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ ran 𝐸 → ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ ran 𝐸)) |
21 | 16, 20 | syl 17 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑣} → (∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ ran 𝐸 → ∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ ran 𝐸)) |
22 | 2 | eqeq1i 2615 |
. . . . . . . . . . . 12
⊢ (𝐵 = {𝑣} ↔ (𝑉 ∖ 𝐴) = {𝑣}) |
23 | | ssrab2 3650 |
. . . . . . . . . . . . . . 15
⊢ {𝑥 ∈ 𝑉 ∣ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾} ⊆ 𝑉 |
24 | 1, 23 | eqsstri 3598 |
. . . . . . . . . . . . . 14
⊢ 𝐴 ⊆ 𝑉 |
25 | | dfss4 3820 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ⊆ 𝑉 ↔ (𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴) |
26 | | eqcom 2617 |
. . . . . . . . . . . . . . 15
⊢ ((𝑉 ∖ (𝑉 ∖ 𝐴)) = 𝐴 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
27 | 25, 26 | bitri 263 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ⊆ 𝑉 ↔ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴))) |
28 | 24, 27 | mpbi 219 |
. . . . . . . . . . . . 13
⊢ 𝐴 = (𝑉 ∖ (𝑉 ∖ 𝐴)) |
29 | | difeq2 3684 |
. . . . . . . . . . . . 13
⊢ ((𝑉 ∖ 𝐴) = {𝑣} → (𝑉 ∖ (𝑉 ∖ 𝐴)) = (𝑉 ∖ {𝑣})) |
30 | 28, 29 | syl5eq 2656 |
. . . . . . . . . . . 12
⊢ ((𝑉 ∖ 𝐴) = {𝑣} → 𝐴 = (𝑉 ∖ {𝑣})) |
31 | 22, 30 | sylbi 206 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑣} → 𝐴 = (𝑉 ∖ {𝑣})) |
32 | | prcom 4211 |
. . . . . . . . . . . . 13
⊢ {𝑤, 𝑣} = {𝑣, 𝑤} |
33 | 32 | eleq1i 2679 |
. . . . . . . . . . . 12
⊢ ({𝑤, 𝑣} ∈ ran 𝐸 ↔ {𝑣, 𝑤} ∈ ran 𝐸) |
34 | 33 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝐵 = {𝑣} → ({𝑤, 𝑣} ∈ ran 𝐸 ↔ {𝑣, 𝑤} ∈ ran 𝐸)) |
35 | 31, 34 | raleqbidv 3129 |
. . . . . . . . . 10
⊢ (𝐵 = {𝑣} → (∀𝑤 ∈ 𝐴 {𝑤, 𝑣} ∈ ran 𝐸 ↔ ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
36 | 21, 35 | sylibd 228 |
. . . . . . . . 9
⊢ (𝐵 = {𝑣} → (∀𝑢 ∈ 𝐵 ∀𝑤 ∈ 𝐴 {𝑤, 𝑢} ∈ ran 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
37 | 13, 36 | syl5bi 231 |
. . . . . . . 8
⊢ (𝐵 = {𝑣} → (∀𝑤 ∈ 𝐴 ∀𝑢 ∈ 𝐵 {𝑤, 𝑢} ∈ ran 𝐸 → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
38 | 12, 37 | syl5com 31 |
. . . . . . 7
⊢ (𝑉 FriendGrph 𝐸 → (𝐵 = {𝑣} → ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
39 | 38 | reximdv 2999 |
. . . . . 6
⊢ (𝑉 FriendGrph 𝐸 → (∃𝑣 ∈ 𝑉 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
40 | 11, 39 | syl5com 31 |
. . . . 5
⊢
(∃𝑣 ∈
𝐵 𝐵 = {𝑣} → (𝑉 FriendGrph 𝐸 → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
41 | 7, 40 | sylbi 206 |
. . . 4
⊢
(∃𝑣 𝐵 = {𝑣} → (𝑉 FriendGrph 𝐸 → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
42 | 41 | com12 32 |
. . 3
⊢ (𝑉 FriendGrph 𝐸 → (∃𝑣 𝐵 = {𝑣} → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
43 | 6, 42 | sylbid 229 |
. 2
⊢ (𝑉 FriendGrph 𝐸 → ((#‘𝐵) = 1 → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸)) |
44 | 43 | imp 444 |
1
⊢ ((𝑉 FriendGrph 𝐸 ∧ (#‘𝐵) = 1) → ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ ran 𝐸) |