Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrawopreglem4 Structured version   Visualization version   GIF version

Theorem frgrawopreglem4 26574
 Description: Lemma 4 for frgrawopreg 26576. In a friendship graph each vertex with degree K is connected with a vertex with degree other than K. This corresponds to statement 4 in [Huneke] p. 2: "By the first claim, every vertex in A is adjacent to every vertex in B.". (Contributed by Alexander van der Vekens, 30-Dec-2017.)
Hypotheses
Ref Expression
frgrawopreg.a 𝐴 = {𝑥𝑉 ∣ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾}
frgrawopreg.b 𝐵 = (𝑉𝐴)
Assertion
Ref Expression
frgrawopreglem4 (𝑉 FriendGrph 𝐸 → ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ ran 𝐸)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐸   𝑥,𝐾   𝑥,𝑉   𝐴,𝑏   𝑥,𝑎,𝑏,𝐸   𝑉,𝑎,𝑏
Allowed substitution hints:   𝐴(𝑎)   𝐵(𝑥,𝑎,𝑏)   𝐾(𝑎,𝑏)

Proof of Theorem frgrawopreglem4
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 frgrawopreg.a . . . 4 𝐴 = {𝑥𝑉 ∣ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾}
2 frgrawopreg.b . . . 4 𝐵 = (𝑉𝐴)
31, 2frgrawopreglem3 26573 . . 3 ((𝑎𝐴𝑏𝐵) → ((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏))
4 frgrancvvdgeq 26570 . . . 4 (𝑉 FriendGrph 𝐸 → ∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)))
5 elrabi 3328 . . . . . . . . 9 (𝑎 ∈ {𝑥𝑉 ∣ ((𝑉 VDeg 𝐸)‘𝑥) = 𝐾} → 𝑎𝑉)
65, 1eleq2s 2706 . . . . . . . 8 (𝑎𝐴𝑎𝑉)
7 sneq 4135 . . . . . . . . . . 11 (𝑥 = 𝑎 → {𝑥} = {𝑎})
87difeq2d 3690 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝑉 ∖ {𝑥}) = (𝑉 ∖ {𝑎}))
9 oveq2 6557 . . . . . . . . . . . 12 (𝑥 = 𝑎 → (⟨𝑉, 𝐸⟩ Neighbors 𝑥) = (⟨𝑉, 𝐸⟩ Neighbors 𝑎))
10 neleq2 2889 . . . . . . . . . . . 12 ((⟨𝑉, 𝐸⟩ Neighbors 𝑥) = (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → (𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) ↔ 𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎)))
119, 10syl 17 . . . . . . . . . . 11 (𝑥 = 𝑎 → (𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) ↔ 𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎)))
12 fveq2 6103 . . . . . . . . . . . 12 (𝑥 = 𝑎 → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑎))
1312eqeq1d 2612 . . . . . . . . . . 11 (𝑥 = 𝑎 → (((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦) ↔ ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦)))
1411, 13imbi12d 333 . . . . . . . . . 10 (𝑥 = 𝑎 → ((𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) ↔ (𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦))))
158, 14raleqbidv 3129 . . . . . . . . 9 (𝑥 = 𝑎 → (∀𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) ↔ ∀𝑦 ∈ (𝑉 ∖ {𝑎})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦))))
1615rspcv 3278 . . . . . . . 8 (𝑎𝑉 → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) → ∀𝑦 ∈ (𝑉 ∖ {𝑎})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦))))
176, 16syl 17 . . . . . . 7 (𝑎𝐴 → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) → ∀𝑦 ∈ (𝑉 ∖ {𝑎})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦))))
1817adantr 480 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) → ∀𝑦 ∈ (𝑉 ∖ {𝑎})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦))))
192eleq2i 2680 . . . . . . . . . 10 (𝑏𝐵𝑏 ∈ (𝑉𝐴))
20 eldif 3550 . . . . . . . . . 10 (𝑏 ∈ (𝑉𝐴) ↔ (𝑏𝑉 ∧ ¬ 𝑏𝐴))
2119, 20bitri 263 . . . . . . . . 9 (𝑏𝐵 ↔ (𝑏𝑉 ∧ ¬ 𝑏𝐴))
22 simpll 786 . . . . . . . . . . 11 (((𝑏𝑉 ∧ ¬ 𝑏𝐴) ∧ 𝑎𝐴) → 𝑏𝑉)
23 eleq1a 2683 . . . . . . . . . . . . . . 15 (𝑎𝐴 → (𝑏 = 𝑎𝑏𝐴))
2423con3rr3 150 . . . . . . . . . . . . . 14 𝑏𝐴 → (𝑎𝐴 → ¬ 𝑏 = 𝑎))
2524adantl 481 . . . . . . . . . . . . 13 ((𝑏𝑉 ∧ ¬ 𝑏𝐴) → (𝑎𝐴 → ¬ 𝑏 = 𝑎))
2625imp 444 . . . . . . . . . . . 12 (((𝑏𝑉 ∧ ¬ 𝑏𝐴) ∧ 𝑎𝐴) → ¬ 𝑏 = 𝑎)
27 velsn 4141 . . . . . . . . . . . 12 (𝑏 ∈ {𝑎} ↔ 𝑏 = 𝑎)
2826, 27sylnibr 318 . . . . . . . . . . 11 (((𝑏𝑉 ∧ ¬ 𝑏𝐴) ∧ 𝑎𝐴) → ¬ 𝑏 ∈ {𝑎})
2922, 28eldifd 3551 . . . . . . . . . 10 (((𝑏𝑉 ∧ ¬ 𝑏𝐴) ∧ 𝑎𝐴) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
3029ex 449 . . . . . . . . 9 ((𝑏𝑉 ∧ ¬ 𝑏𝐴) → (𝑎𝐴𝑏 ∈ (𝑉 ∖ {𝑎})))
3121, 30sylbi 206 . . . . . . . 8 (𝑏𝐵 → (𝑎𝐴𝑏 ∈ (𝑉 ∖ {𝑎})))
3231impcom 445 . . . . . . 7 ((𝑎𝐴𝑏𝐵) → 𝑏 ∈ (𝑉 ∖ {𝑎}))
33 neleq1 2888 . . . . . . . . 9 (𝑦 = 𝑏 → (𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) ↔ 𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎)))
34 fveq2 6103 . . . . . . . . . 10 (𝑦 = 𝑏 → ((𝑉 VDeg 𝐸)‘𝑦) = ((𝑉 VDeg 𝐸)‘𝑏))
3534eqeq2d 2620 . . . . . . . . 9 (𝑦 = 𝑏 → (((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦) ↔ ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏)))
3633, 35imbi12d 333 . . . . . . . 8 (𝑦 = 𝑏 → ((𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦)) ↔ (𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏))))
3736rspcv 3278 . . . . . . 7 (𝑏 ∈ (𝑉 ∖ {𝑎}) → (∀𝑦 ∈ (𝑉 ∖ {𝑎})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦)) → (𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏))))
3832, 37syl 17 . . . . . 6 ((𝑎𝐴𝑏𝐵) → (∀𝑦 ∈ (𝑉 ∖ {𝑎})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑦)) → (𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏))))
39 nnel 2892 . . . . . . . . 9 𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) ↔ 𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎))
40 frisusgra 26519 . . . . . . . . . . . . . . 15 (𝑉 FriendGrph 𝐸𝑉 USGrph 𝐸)
41 nbgraeledg 25959 . . . . . . . . . . . . . . 15 (𝑉 USGrph 𝐸 → (𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) ↔ {𝑏, 𝑎} ∈ ran 𝐸))
4240, 41syl 17 . . . . . . . . . . . . . 14 (𝑉 FriendGrph 𝐸 → (𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) ↔ {𝑏, 𝑎} ∈ ran 𝐸))
43 prcom 4211 . . . . . . . . . . . . . . 15 {𝑏, 𝑎} = {𝑎, 𝑏}
4443eleq1i 2679 . . . . . . . . . . . . . 14 ({𝑏, 𝑎} ∈ ran 𝐸 ↔ {𝑎, 𝑏} ∈ ran 𝐸)
4542, 44syl6bb 275 . . . . . . . . . . . . 13 (𝑉 FriendGrph 𝐸 → (𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) ↔ {𝑎, 𝑏} ∈ ran 𝐸))
4645biimpa 500 . . . . . . . . . . . 12 ((𝑉 FriendGrph 𝐸𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎)) → {𝑎, 𝑏} ∈ ran 𝐸)
4746a1d 25 . . . . . . . . . . 11 ((𝑉 FriendGrph 𝐸𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎)) → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))
4847expcom 450 . . . . . . . . . 10 (𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸)))
4948a1d 25 . . . . . . . . 9 (𝑏 ∈ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑎𝐴𝑏𝐵) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
5039, 49sylbi 206 . . . . . . . 8 𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑎𝐴𝑏𝐵) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
51 eqneqall 2793 . . . . . . . . . 10 (((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏) → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))
5251a1d 25 . . . . . . . . 9 (((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸)))
5352a1d 25 . . . . . . . 8 (((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏) → ((𝑎𝐴𝑏𝐵) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
5450, 53ja 172 . . . . . . 7 ((𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏)) → ((𝑎𝐴𝑏𝐵) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
5554com12 32 . . . . . 6 ((𝑎𝐴𝑏𝐵) → ((𝑏 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑎) → ((𝑉 VDeg 𝐸)‘𝑎) = ((𝑉 VDeg 𝐸)‘𝑏)) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
5618, 38, 553syld 58 . . . . 5 ((𝑎𝐴𝑏𝐵) → (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) → (𝑉 FriendGrph 𝐸 → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
5756com3l 87 . . . 4 (∀𝑥𝑉𝑦 ∈ (𝑉 ∖ {𝑥})(𝑦 ∉ (⟨𝑉, 𝐸⟩ Neighbors 𝑥) → ((𝑉 VDeg 𝐸)‘𝑥) = ((𝑉 VDeg 𝐸)‘𝑦)) → (𝑉 FriendGrph 𝐸 → ((𝑎𝐴𝑏𝐵) → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸))))
584, 57mpcom 37 . . 3 (𝑉 FriendGrph 𝐸 → ((𝑎𝐴𝑏𝐵) → (((𝑉 VDeg 𝐸)‘𝑎) ≠ ((𝑉 VDeg 𝐸)‘𝑏) → {𝑎, 𝑏} ∈ ran 𝐸)))
593, 58mpdi 44 . 2 (𝑉 FriendGrph 𝐸 → ((𝑎𝐴𝑏𝐵) → {𝑎, 𝑏} ∈ ran 𝐸))
6059ralrimivv 2953 1 (𝑉 FriendGrph 𝐸 → ∀𝑎𝐴𝑏𝐵 {𝑎, 𝑏} ∈ ran 𝐸)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 195   ∧ wa 383   = wceq 1475   ∈ wcel 1977   ≠ wne 2780   ∉ wnel 2781  ∀wral 2896  {crab 2900   ∖ cdif 3537  {csn 4125  {cpr 4127  ⟨cop 4131   class class class wbr 4583  ran crn 5039  ‘cfv 5804  (class class class)co 6549   USGrph cusg 25859   Neighbors cnbgra 25946   VDeg cvdg 26420   FriendGrph cfrgra 26515 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4699  ax-sep 4709  ax-nul 4717  ax-pow 4769  ax-pr 4833  ax-un 6847  ax-cnex 9871  ax-resscn 9872  ax-1cn 9873  ax-icn 9874  ax-addcl 9875  ax-addrcl 9876  ax-mulcl 9877  ax-mulrcl 9878  ax-mulcom 9879  ax-addass 9880  ax-mulass 9881  ax-distr 9882  ax-i2m1 9883  ax-1ne0 9884  ax-1rid 9885  ax-rnegex 9886  ax-rrecex 9887  ax-cnre 9888  ax-pre-lttri 9889  ax-pre-lttrn 9890  ax-pre-ltadd 9891  ax-pre-mulgt0 9892 This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4373  df-int 4411  df-iun 4457  df-br 4584  df-opab 4644  df-mpt 4645  df-tr 4681  df-eprel 4949  df-id 4953  df-po 4959  df-so 4960  df-fr 4997  df-we 4999  df-xp 5044  df-rel 5045  df-cnv 5046  df-co 5047  df-dm 5048  df-rn 5049  df-res 5050  df-ima 5051  df-pred 5597  df-ord 5643  df-on 5644  df-lim 5645  df-suc 5646  df-iota 5768  df-fun 5806  df-fn 5807  df-f 5808  df-f1 5809  df-fo 5810  df-f1o 5811  df-fv 5812  df-riota 6511  df-ov 6552  df-oprab 6553  df-mpt2 6554  df-om 6958  df-1st 7059  df-2nd 7060  df-wrecs 7294  df-recs 7355  df-rdg 7393  df-1o 7447  df-2o 7448  df-oadd 7451  df-er 7629  df-en 7842  df-dom 7843  df-sdom 7844  df-fin 7845  df-card 8648  df-cda 8873  df-pnf 9955  df-mnf 9956  df-xr 9957  df-ltxr 9958  df-le 9959  df-sub 10147  df-neg 10148  df-nn 10898  df-2 10956  df-n0 11170  df-xnn0 11241  df-z 11255  df-uz 11564  df-xadd 11823  df-fz 12198  df-hash 12980  df-usgra 25862  df-nbgra 25949  df-vdgr 26421  df-frgra 26516 This theorem is referenced by:  frgrawopreglem5  26575  frgrawopreg1  26577  frgrawopreg2  26578
 Copyright terms: Public domain W3C validator