Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > exsnrex | Structured version Visualization version GIF version |
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
exsnrex | ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vsnid 4156 | . . . . 5 ⊢ 𝑥 ∈ {𝑥} | |
2 | eleq2 2677 | . . . . 5 ⊢ (𝑀 = {𝑥} → (𝑥 ∈ 𝑀 ↔ 𝑥 ∈ {𝑥})) | |
3 | 1, 2 | mpbiri 247 | . . . 4 ⊢ (𝑀 = {𝑥} → 𝑥 ∈ 𝑀) |
4 | 3 | pm4.71ri 663 | . . 3 ⊢ (𝑀 = {𝑥} ↔ (𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
5 | 4 | exbii 1764 | . 2 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) |
6 | df-rex 2902 | . 2 ⊢ (∃𝑥 ∈ 𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥 ∈ 𝑀 ∧ 𝑀 = {𝑥})) | |
7 | 5, 6 | bitr4i 266 | 1 ⊢ (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥 ∈ 𝑀 𝑀 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 195 ∧ wa 383 = wceq 1475 ∃wex 1695 ∈ wcel 1977 ∃wrex 2897 {csn 4125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1713 ax-4 1728 ax-5 1827 ax-6 1875 ax-7 1922 ax-10 2006 ax-11 2021 ax-12 2034 ax-13 2234 ax-ext 2590 |
This theorem depends on definitions: df-bi 196 df-or 384 df-an 385 df-tru 1478 df-ex 1696 df-nf 1701 df-sb 1868 df-clab 2597 df-cleq 2603 df-clel 2606 df-nfc 2740 df-rex 2902 df-v 3175 df-sn 4126 |
This theorem is referenced by: frgrawopreg1 26577 frgrawopreg2 26578 frgrwopreg1 41487 frgrwopreg2 41488 |
Copyright terms: Public domain | W3C validator |