MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  exsnrex Structured version   Visualization version   GIF version

Theorem exsnrex 4168
Description: There is a set being the element of a singleton if and only if there is an element of the singleton. (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Assertion
Ref Expression
exsnrex (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})

Proof of Theorem exsnrex
StepHypRef Expression
1 vsnid 4156 . . . . 5 𝑥 ∈ {𝑥}
2 eleq2 2677 . . . . 5 (𝑀 = {𝑥} → (𝑥𝑀𝑥 ∈ {𝑥}))
31, 2mpbiri 247 . . . 4 (𝑀 = {𝑥} → 𝑥𝑀)
43pm4.71ri 663 . . 3 (𝑀 = {𝑥} ↔ (𝑥𝑀𝑀 = {𝑥}))
54exbii 1764 . 2 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
6 df-rex 2902 . 2 (∃𝑥𝑀 𝑀 = {𝑥} ↔ ∃𝑥(𝑥𝑀𝑀 = {𝑥}))
75, 6bitr4i 266 1 (∃𝑥 𝑀 = {𝑥} ↔ ∃𝑥𝑀 𝑀 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 195  wa 383   = wceq 1475  wex 1695  wcel 1977  wrex 2897  {csn 4125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-rex 2902  df-v 3175  df-sn 4126
This theorem is referenced by:  frgrawopreg1  26577  frgrawopreg2  26578  frgrwopreg1  41487  frgrwopreg2  41488
  Copyright terms: Public domain W3C validator